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TECHNOLOGY IN VIDEO GAMES 

In video games, technology has always 

played an important part (as technological 

advancements, futuristic technology, lost 

technology…), often taking a major role in 

games: the titans in Titanfall, the portal gun in 

Portal, the metal gears in Metal Gear, and all 

sorts of armor, equipment and gadgets in 

Metroid, Crisis, Halo, Batman, Call of Duty etc. 

This is not a surprise, given that the public of 

such video games has always been highly 

connected with the latest technology. Also, 

while being futuristic and sometimes 

exaggerated, technological representations in 

games always try to remain close to real-world 

tech and science, in order to meet demands for 

“realism” in games. 

In this context, robots (and other automated 

equipment) have also been widely featured in 

many games. These devices, though, always 

have military and war purposes. Besides all the 

games mentioned above, we have the laptop 

gun in Perfect Dark, JACK in Gears of War and all 

the machines in the Final Fantasies. When taking 

part in search operations, robots are used either 

for protecting something/-one/-where or for 

surveillance and repression: the UAVs 

(Unmanned Aerial Vehicles) in several shooters, 

the Monokumas in Danganroompa, the 1984-

esquee tech from Freedom Wars etc. 

This view of technology is pretty much one-

sided, overshadowing their possible applications 

in more humanitarian scenarios, such as using 

UAVs in “Search & Rescue” (SAR) operations. 

Although shooting stuff is the core and fun of 

many games, I think it is worthwhile to explore 

the more “pacifist” side and to show gamers 

what this technology is really capable of. After 

all, the use of UAVs in SAR operations is already 

a reality. 

 

HUMANITARIAN LOGISTICS IN DISASTER RELIEF 

OPERATIONS 

Modern humanitarian logistics operations 

originated during the Nigerian civil war, in the 

conflict of Biafra, which unfolded after an 

attempted military coup in the 1960s. This 

conflict was the first in which large-scale 

humanitarian operations were conducted 

(Blecken, 2010). Since then, such operations 

started to be carried out systematically, and 

humanitarian organizations have often seen 

their objectives and principles collide with those 

of other interested parties. The principles of 

humanitarian operations (humanity, impartiality 

and neutrality) were established because of the 
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necessity to position themselves between the 

two opposing sides of any conflict, and now 

serve as a guide for all humanitarian 

organizations (Blecken, 2010).  

The basis of humanitarian operations is the 

belief that individuals affected by crises have the 

right to life and dignity, and thus are entitled to 

assistance. The Sphere Project (2011), where 

several organizations set minimum standards 

for humanitarian assistance, defines the right to 

life with dignity as: the right to live free of 

treatments and punishments that are cruel, 

inhuman or unworthy. As such, the central ideas 

of humanitarian operations are: the right to life 

when it is threatened and taking necessary 

measures to save lives and reduce suffering. 

Humanitarian Logistics is a relatively new 

academic field, but the number of contributions 

in the area have increased steadily in recent 

years (see Leiras et al., 2014, for a thorough 

review). 

Wassenhove (2006) defines a disaster as a 

“break”, something that physically affects a 

system, threatening its priorities and objectives. 

Disasters can be classified either as natural or 

“man-made”. Likewise, they can be classified as 

having a sudden or slow onset. Examples of 

natural disasters with sudden onsets are 

earthquakes and hurricanes, while examples of 

natural disasters with slow onsets are hunger 

and drought. Examples of man-made disasters 

with sudden onsets are coups and terrorist 

attacks, while slow onset man-made disasters 

are political crises and refugee crises 

(Wassenhove, 2006). 

Traditionally, four stages are defined in 

Operations Management in disaster scenarios: 

mitigation, preparedness, response and 

recovery (Wassenhove, 2006; Tomasini & 

Wassenhove, 2009). SAR operations are those 

conducted in the response phase, aiming to find 

and provide relief to the greatest number of 

people in the hours after the disaster, trying to 

maximize the survival chance of victims (Hoyos 

et al., 2015). Tsunemi et al. (2015) emphasize 

the importance of agility in such operations, as 

statistical studies show that the rate of survival 

of, for instance, trapped victims in collapsed 

buildings, plummets within 72 hours of the 

moment of disaster. 

UAVs are able to act autonomously in 

dynamic and complex environments and thus, 

are used predominantly for military purposes, 

such as intelligence gathering, surveillance and 

reconnaissance (Gupta et al., 2013). This is, of 

course, what is reflected in video games. 

However, there has been increasing interest in 

using UAVs for SAR operations, since they are 

able to quickly reach areas of difficult access and 

to quickly build a network of information and 

communication among the affected areas 

(OCHA, 2014; Meier, 2015). This is particularly 

relevant given that the travel speed within a 

region affected by disasters such as floods or 

earthquakes tend to be greatly reduced (Yuan & 

Wang, 2009). 

SAR operations have particular difficulties, 

such as the uncertainty of the time required to 

inspect different regions and the uncertainty of 

the number, amount and location of victims. 

Thus, traditional methods of routing and 

scheduling may be insufficient to define the best 

way of working with UAVs. The present study is 

divided in three parts: (a) a brief review of the 

literature on the use of UAVs for SAR operations; 

(b) an evaluation of how different heuristics (in 
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particular the “sweep method” of Ballou, 2006) 

stack up against the uncertainties of said 

operations; and (c) the proposal of 

improvements in heuristics to adapt them to the 

specificities of SAR. 

 

Heuristic: Sometimes, an exact (or “optimized”) solution 

to a problem cannot be mathematically guaranteed or 

would take too much time and resources to be calculated. 

Many times, though, an approximate solution is 

acceptable for such problems. A procedure that can 

produce a practical, though not perfect solution, is a 

heuristic (Henderson, 2009). 

 

UAVs IN SEARCH & RESCUE OPERATIONS 

Tsunemi et al. (2015) classify rescue 

operations in three types: (1) search operations 

in a wide area, conducted immediately after the 

disaster to assess its scale and impacts; (2) 

search operations in a narrow area, for obtaining 

more specific information of affected sites 

discovered by the type-1 search; and (3) 

pinpoint search operations, which physically 

access the sites from type-2 search to 

locate/rescue victims. Constant communication 

between the search teams and the HQ, as well 

as using real-time information to update them, 

is clearly necessary in all three search types 

(Huang et al., 2013). 

Irrespectively of the types above, works 

usually distinguish between two kinds of SAR 

operations, according to the area in which they 

take place: urban and non-urban (or wild). SAR 

operations in wild areas are searches for people 

lost in deserts, mountains or any other sparsely 

populated natural environment. Most works 

dealing with SAR operations (particularly those 

that involve UAVs) are interested in these 

environments (e.g., Goodrich et al., 2007; 

Cooper & Goodrich, 2008; Lin & Goodrich, 2009; 

Lin et al., 2010; Morse et al., 2010; Molina et al., 

2012; Karma et al., 2015). For SAR operations in 

urban areas, there are additional challenges, 

such as searching through debris and clearing 

roads (Chen & Miller-Hooks, 2012). However, 

not many works focus on urban settings (e.g., 

Jotshi et al., 2009; Ko et al., 2009; Chen & Miller-

Hooks, 2012; Huang et al., 2013).  

Chen & Miller-Hooks (2012) point that, 

although there is an extensive literature that 

addresses the management of emergencies, few 

studies propose optimization techniques for SAR 

operations: Jotshi & Batta (2008) present a 

search heuristic that minimizes the time to find 

a single stationary entity on a given area; Jotshi 

et al. (2009) bring solutions for dispatching and 

routing emergency vehicles in urban settings 

when roads have been compromised; and finally 

Chen & Miller-Hooks (2012) themselves propose 

a multistage stochastic programming algorithm 

for urban settings, increasing the efficiency of 

the operations and highlighting the importance 

of communication between the search teams. 

 

Stochastic programming (or optimization) is a framework 

that allows the modeling of uncertainty in the input data, 

in contrast to deterministic optimization, which does not. 

In some complex cases, the inherent uncertainty of data, 

coupled with the evolution of such data over time, leads 

to a sequential optimization-under-uncertainty model 

(Casey & Sen, 2005), where data is input through a series 

of stages. Such problems are called multi-stage stochastic 

programming. 

 

As for the use of UAVs in SAR operations, 

several works have already tackled different 

problems, ranging from building communication 

networks to improving images obtained by the 
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UAVs’ sensors (e.g., image recognition and 

infrared). In a UAV-based SAR operation, there 

are four critical personnel roles (Goodrich et al., 

2007; Cooper & Goodrich, 2008): (1) the 

commander responsible for managing the 

search; (2) the UAV operator; (3) the UAV’s 

sensor operator (it’s better to have a different 

person than the UAV operator for this); (4) the 

ground search team. 

Ko & Lau (2009) built and tested an 

autonomous UAV for urban environments, 

which could circumnavigate debris and search 

for the heat signatures of survivors. Despite this 

line of research being still on its infancy (Lin et 

al., 2010), their focus have already changed a 

little. As a consequence of recent technological 

advances (mainly in electromechanical systems, 

communication technology and control theory), 

many proposals now focus on multiple 

cooperative robots, known as “swarms”. 

Swarms have many benefits over regular UAVs, 

such as: robustness against failures (other 

robots can continue the search if one has 

problems), increased flexibility in reorganizing 

as the mission progresses, and economies of 

scale (Çayurpunar et al., 2008; Waharte et al., 

2009). 

Regardless of UAV type, the way the search 

is in fact conducted is the crucial point and it 

depends on the algorithms used. Lin & Goodrich 

(2009) proposed and algorithm that considers 

the priority of the search regions (those most 

likely to have survivors), in order to define the 

search routes for the UAVs. Murtaza et al. (2013) 

proposed a similar algorithm, but using a 

partially observable Markov decision process 

method. 

 

 

A very interesting (and geeky) work was conducted by 

Megalingam et al. (2012). They proposed the design of a 

rescue robot with a human-like upper-body that is 

controlled through gesture-based imitations, acquired 

through the Microsoft Kinect, a motion sensing input 

device developed originally for the Xbox 360 video game 

consoles (and later for Windows PCs and the Xbox One). 

 

 
Would it look something like this maybe? (Nintendo’s 

R.O.B.; image by Evan-Amos, 2012, taken from Wikimedia 

Commons). 

 

Waharte & Trigone (2010) tested three types 

of algorithms (greedy heuristic, heuristic based 

on attraction/repulsion potentials, and heuristic 

based on partially observable Markovian 

decision process) through simulations, and 

found that estimating the best search paths 

through the sharing of information between 

UAVs reduced the duration of the operations, 

albeit at a high computational cost. They also 

concluded that there are several important 
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aspects to be met, such as the quality of the 

sensors, energy constraints, environmental 

hazards and communication restrictions 

between UAVs. Regarding the latter, Asadpour 

et al. (2012) point out that the communication 

capability of conventional UAVs is insufficient 

for the large volume of data required for SAR 

operations, such as images and videos. They 

thus proposed hybrid networks made with 

smartphones and ground stations. 

Environmental dangers are also quite 

problematic, as shown by the work of Karma et 

al. (2015), since they may incur on reduced 

visibility (thus making detection difficult) or 

severe damage to the usually fragile UAVs. 

 

A Markov decision process is a model for sequential 

decision making when under uncertainty, in situations 

where outcomes are partly random and partly under 

control of the decision maker (or agent), considering both 

short-term outcomes of current decisions and 

opportunities for making decisions in the future. The 

partially observable Markov decision process is a 

generalization of the Markov decision process, and 

considers that the decision maker cannot directly observe 

the state of the system. Since the true state is hidden, the 

agent must choose actions based on past actions and 

observations, composing scenarios of possible state 

distributions (called belief states). 

 

FORMULATION OF THE PROBLEM 

As I mentioned above, here I intend to 

evaluate how different heuristics (in particular 

the “sweep method” of Ballou, 2006) stack up 

against the uncertainties of SAR operations, also 

proposing improvements for them. Therefore, I 

need to insert some of the difficulties present in 

real-life SAR operations. Thus, the problem 

formulated has the following characteristics: 

 The maps where the search occurs are 

generated randomly, with random x and y 

coordinates being assigned to a defined 

number of regions (search sites). The maps 

can have 50, 100 or 500 regions. For the 

present study, it was decided that the 

coordinates may vary from (-3) to (+3), and 

the travel time between two regions is equal 

to the distance between them in the 

stipulated coordinated plane. 

 A command base for the SAR operation 

is defined on the map at a random position. 

The base is the starting point of the UAVs’ 

routes. For this study, it was decided that the 

basis of the coordinates could range from (-

1.5) to (+1.5). An example of a map, with the 

search regions, can be seen on Figure 1. The 

application for the map generation was 

developed in VBA, and its interface can be 

seen on Figure 2. 

 

 
Figure 1. Example of a search map with 50 search 

locations (blue dots) and the command base (red 

diamond). The travel time between two points is 

directly proportional to the distance between them. 
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 The search is conducted by five UAVs. A 

maximum flight range is set for each vehicle, 

after which it must return to the base before 

leaving again (immediately) on the next 

route. It was decided that the flight range for 

all UAVs is (30). 

 Each search location has a known 

“search complexity”, randomly assigned. 

Places with greater complexity require larger 

times to complete the search. In this study, it 

was decided that the complexity (search 

time) could be (1), (2), (3) or (4), with 

respective probabilities of being assigned 

(40%), (30%), (20%) or (10%). 

 Each search location has a known 

probability of containing a victim, randomly 

assigned. The total number of victims is 

unknown. In the present study, it was defined 

that the likelihood of a location having a 

victim could be (10%), (30%), (60%) or (90%), 

with chances of (30%), (20%), (20%) or (30%), 

respectively. 

 For testing the various heuristics, four 

instances were generated for each map scale 

(50, 100 and 500 search regions). 

 

 

 
Figure 2. Interface of the map generator. 
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HEURISTICS TO SOLVE THE PROBLEM 

For solving the proposed scenarios, two 

heuristics were developed, prioritizing areas 

where victims are most likely to be found 

(similar to the works of Lin & Goodrich, 2009, 

and Murtaza et al., 2013). After the initial 

results, a third hybrid heuristic was proposed. 

The interface developed in VBA, for the 

simulation of the heuristics can be seen on 

Figure 3. 

 

 

 
Figure 3. Simulator interface. 

 

“Greedy” Heuristic 

The first heuristic proposed is the “greedy”, 

which takes into account the distance to the 

search areas, the complexity of the search 

operation and the probability of finding a victim, 

to compose a prioritization factor. Each UAV 

calculates the factor for all regions that have not 

yet been searched, and goes towards the region 

with the highest factor. The greedy heuristic is 

said to be “myopic”, because it does not have 

long-term vision. Three different factors were 

tested to evaluate how the “distance” and 

“probability of victim” parameters affected the 

quality of the solution: one that considers only 

the shortest time to come and inspect the 

regions (1/T); one that considers the shortest 

time and the square of the probability of finding 

a victim (1/T*P2); and one that takes the 

shortest time, and the fifth power of the 

probability of finding a victim of (1/T*P5). 

 

“Sweep” Heuristic 

The “sweep” heuristic is a simple and known 

vehicle routing algorithm, capable of solving a 

variety of problems rapidly and with relatively 

small average error rate (around 10%; Ballou, 

2006). In this method, a line is drawn from the 

point of origin, and this line rotates on a defined 

direction. Search locations through which the 

line passes are the ones which will compose a 

route, the rotation stops when the length of the 

route equals the flight range of the UAV. Finally, 

prioritization logic is applied for all locations that 

compose this route, in order to define the route 
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sequence. Because of this two-stage process, 

Ballou (2006) points out possible problems in 

the formation of routes, such as the non-

compliance of flight range restriction. 

In the present problem, prioritization logic 

applied in the second stage was the likelihood of 

a location having victims, with locations of 

greater probability being visited first. It should 

be noted that the “sweep” method 

implemented has a major constraint for the 

proposed problem, because the routes are 

generated complete one at a time, and assigned 

to a UAV, so that the last search sites tend to be 

visited by a single vehicle (for being part of the 

same route), and thus allowing for idle vehicles 

(those that have completed their own routes). 

This restriction is most noticeable for problems 

with few locations. 

 

Hybrid Heuristic 

After the first tests of the algorithms, it was 

found that the “greedy” heuristic quickly finds 

the first victims, but are slow to find all of them. 

Meanwhile the “sweep” method quickly finds all 

the victims, but is not so effective in the first 

moments of the SAR operation, which are the 

most critical. Because of this, a hybrid method 

was implemented, where the first routes are 

generated by “greedy” heuristics and the later 

routes are generated by the “sweep” method. 

For this problem, in scenarios with 50, 100 and 

500 search sites, a greedy heuristic is used until 

time instances of 10, 30 and 90 respectively. 

 

RESULTS AND DISCUSSION 

The simulation results can be seen on Tables 

1 to 3, showing the average time needed to find 

the indicated percentage of survivors. 

Table 1. Results of the simulation for the different 

algorithms (with 50 search locations), showing the 

average time needed to finish. 

 
 

Table 2. Results of the simulation for the different 

algorithms (with 100 search locations), showing the 

average time needed to finish. 

 
 

The “greedy” heuristics that prioritize the 

probability of finding survivors had good results 

for the early stages of the operation, while the 

“sweep” method is more efficient in finding all 

survivors in the shortest possible time. This 

becomes more evident with the routes 

generated by each method (Fig. 4., the “sweep” 

method creates more efficient routes). Hybrid 

algorithms, in turn, use the “greedy” strategy for 

finding many survivors in the early moments of 

the search, switching to the “sweep” strategy 

1/T 1/T*P
2

1/T*P
5

10% 3.43 3.48 3.68 4.23 3.68

20% 5.87 6.01 5.74 6.82 5.74

30% 10.59 8.48 8.63 8.98 8.63

40% 14.23 13.28 13.68 12.28 12.96

50% 18.38 16.68 17.24 16.43 17.12

60% 22.65 21.54 21.76 19.3 20.25

70% 32.1 25 26.55 22.51 23.58

80% 39.24 31.32 32.68 27.21 27.83

90% 44.98 37.33 37.24 34.81 34.76

100% 49.07 46.43 48.13 44.44 39.46

% found
Greedy

Sweep Hybrid

1/T 1/T*P2 1/T*P5

10% 5.37 4.26 4.26 9.33 4.26

20% 11.46 7.71 7.71 15.87 7.71

30% 18.49 13.99 13.99 32.37 13.99

40% 23.33 21.58 21.58 37.78 21.58

50% 38.95 33 28.99 45.57 28.99

60% 47.36 39.09 40.59 50.44 42.04

70% 57.43 48.42 50.27 60.65 51.01

80% 77.86 58.55 59.1 67.69 60.58

90% 84.61 69.48 69.42 72.73 75.63

100% 93.26 98.32 100.51 82.26 92.82

% found
Greedy

Sweep Hybrid
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later on in order to find all the victims faster. 

Figure 5 shows an example of comparative 

results for a specific scenario. 

 

CONCLUSION 

SAR is an essential part of humanitarian 

operations, and the use of UAVs for this purpose 

is already a reality. Still, few studies have 

focused on search algorithms for using UAVs and 

even fewer have considered the complexity and 

uncertainty of real-life problems. This work is a 

first attempt to tackle this problem. 

 

Table 3. Results of the simulation for the different 

algorithms (with 500 search locations), showing the 

average time needed to finish. 

 
 

 
Figure 4. Example of routes generated by different algorithms for a scenario with 50 locations. 

 

The results provided by the simulations of 

the hybrid model were very promising, and the 

balance between “greedy” and “sweep” 

heuristics appear to be a good solution to meet 

conflicting objectives. The time spent for each 

algorithm during a hybrid approach can be 

1/T 1/T*P2 1/T*P5

10% 24.16 13.87 13.87 32.39 13.87

20% 53.79 38.33 39.26 64.09 39.26

30% 85.08 60.92 70.54 97.38 70.54

40% 137.27 102.72 104.97 134.07 103.56

50% 194.46 135.69 135.56 165.09 152.81

60% 259.92 174.52 172.9 202.21 191.59

70% 307.46 225.19 223.99 240.32 227.84

80% 370.08 277.42 273.92 277.53 269.44

90% 439.58 342.6 340.62 307.46 321.49

100% 498.55 488.58 487.55 333.9 360.37

% found
Greedy

Sweep Hybrid
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calibrated according to the characteristics of the 

explored area. However, the model has a large 

number of complex parameters, being difficult 

to calibrate. A next step would be to test such 

model in real-life scenarios to assess the 

sensitivity of such parameters. 

Perhaps the most obvious constraint on the 

proposed solutions is the lack of communication 

between UAVs. A more intelligent system of 

communication between different vehicles 

allows a more coordinated search (Çayurpurnar 

et al., 2008) and would probably show even 

better results, particularly in scenarios with 

many search sites. An idea would be to develop 

an UAV control simulator, where the “players” 

could communicate or not with each other, and 

the differences in performance could be 

analyzed systematically. 

Another constraint presented in the work is 

the binary nature of the presence of victims on 

search sites. One possible improvement would 

be the use of Poisson distributions to set the 

number of victims for each location, which 

would affect the dynamics of prioritization 

factors, making the model more complex and 

closer to real-life scenarios. 

Finally, we must remember that almost no 

video games include such a humanistic view on 

technology as SAR operations (unless it is for 

rescuing the main hero, of course). Although 

agreeing that combat, war, conflicts and 

violence are an important (and fun!) part of 

games, it is also nice to remember the positive 

impact brought by technological advancements, 

and that such education through games is 

always possible. 

 

 

Figure 5. Example of the results of the different algorithms for a scenario with 500 locations. The 

“greedy” 1/T*P2 and 1/T*P5 had the same result, so only the latter is shown. 
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