
7

Journal of Geek Studies
jgeekstudies.org

7

The Angry Video Game Model: exploring neural
network architectures to predict videogame

review ratings
Henrique Magalhães Soares

Independent researcher. São Paulo, SP, Brazil.
Email: hemagso@gmail.com

Videogame reviews are an essential part
of the videogame industry today. From re-
views by specialized gaming outlets such as
IGN or Kotaku to individual reviews on
platforms that sell the game themselves
such as Steam, reviews are an important
part of the gaming ecosystem. They allow
players to identify which games are worth
investing their hard-earned cash and their
scarce leisure time.

Reviews have also been used as a way
for customers to draw attention to an issue
with the game. This practice, known as re-
view bombing, has increased in recent
years. One of the earlier high-profile exam-
ples is the review bombing of Mass Effect 3
in 2012 due to its controversial ending,
which led developer Bioware to later re-
lease an extended cut as a response (Gel-
bart, 2019). Other examples include the re-
view bombing of The Elder Scrolls V: Skyrim
following the announcement in 2015 of paid
mods for the game, which ultimately led
the game developer Bethesda to postpone
this feature until 2017 (Gelbart, 2019), and
the review bombing of Pokémon Sword/
Shield due to the games not including every
Pokémon from previous generations,
among other issues (Kim & Liao, 2019).

THE ANGRY VIDEO GAME NERD

Reviews can also be the source of a lot of

fun. Numerous YouTube channels special-
ized themselves in making game reviews in
an entertaining way, providing (some-
times) insightful commentary on the qual-
ity of games.

One of these shows is The Angry Video
Game Nerd, a YouTube review comedy web
series created by James Rolfe. To be clear,
despite having increased in popularity on
YouTube, the show predates it by more
than a year. It was first released on Cine-
massacre website on May 25, 2004 (Cine-
massacre Productions LLC, n.d.). Its
YouTube debut only happened on Decem-
ber 15, 2005 (Wikipedia, 2021).

In the show James Rolfe plays the per-
sona of “The Nerd”, an angry, short tem-
pered and foul-mouthed character who re-
views bad games (usually from the 16 or 32-
bit console era) in an attempt to warn the
viewer not to play them. The show is con-
sidered one of the pioneers of review videos
on the internet, inspiring, for better or
worse, many other content creators.

It is very common for reviews to include
some kind of numerical or ordinal scale that
allows customers to compare reviews or to
aggregate reviews from different users into
a single score. However, despite being re-
views, Angry Video Game Nerd (hence-
forth AVGN) videos do not feature any nu-
merical ratings that allow us to do that. In
this article I aim to investigate whether ma-

Cite this article as: Soares, H.M. (2024) The Angry Videogame Model: exploring neural network architectures to
predict videogame review ratings. Journal of Geek Studies 11(1): 7-34. https://doi.org/10.5281/zenodo.10900204

https://doi.org/10.5281/zenodo.10900204

chine learning and sentiment classification
techniques can help us overcome this limi-
tation of the show’s format.

Note on profanity: Being inspired by
Rolfe’s show to write this article, I will use
many of his quotes to illustrate the tech-
niques being applied here. While I used the
actual verbatim text when running the
models and predictions (as the removal of
an expletive may change the meaning in-
tended for the sentence), the quotes in print
will not feature any of the Nerd’s trade-
mark profanity. That was done to keep this
text accessible to all viewers, so I will in-
stead use less offensive substitutes or *** in
place of the expletives. These editorial
changes will be marked by a gray highlight
over the word.

OBJECTIVES

This paper aims to establish a perfor-
mance baseline for machine learning meth-
ods in predicting video game review scores,
offering an introduction to the topic for
those new to the field. While the methods
described here are definitely outdated com-
pared to recent advances brought by Large
Language Models such as GPT-4 or Google
Gemini, they still can be useful – both as
simple and low-cost solutions for less com-
plex language tasks and as educational
tools. I believe the approach used in this ar-
ticle strikes a good balance between achiev-
ing a good performance and being easy to
understand and follow along – this is a sci-
ence communication journal, after all. (This
still requires some basic understanding of
linear algebra to follow along.) To facilitate
this goal, all code used in this paper has
been made available on Github (https://
github.com/hemagso/avgm).

Overview of this article

This article is structured in the following
manner:

• First, I will present some common
challenges and pitfalls encountered

when dealing with natural language.

• Next, I will describe the data used in
this article and detail all pre-processing
done to it.

• I then discuss model architectures
used in this article and present their per-
formance and shortcomings.

• Finally, I present my conclusions on
which model architecture works best for
this dataset and suggest new lines of re-
search based on this work.

CHALLENGES FOR NLP

Before describing the work done here, I
want to briefly discuss some of the chal-
lenges of working with Natural Languages
from a machine learning perspective. This
list is by no means exhaustive, but it should
be enough to situate the reader on the chal-
lenges that must be overcome to obtain
good performance for our machine learning
models.

Contextual words

Most languages have words whose
meaning changes depending on where they
are in the text and what other words accom-
pany them. For example, consider the fol-
lowing sentence:

“I ran to the game store because we
ran out of bad games to play.”

The highlighted word, “ran”, has two
different meanings in this sentence. On the
first occurrence it means to quickly move
yourself to another location, while in the
second occurrence it is part of the “ran out”
expression, which indicates that our supply
of something was exhausted (in this case,
bad games). Another example, more relat-
able for our sentiment analysis application,
can be seen on the following sentence:

“You know what? This game is not
bad.”

In this example the only way to accu-

Journal of Geek Studies 11(1): 7-34 (2024).

Soares, H.M.

https://github.com/hemagso/avgm
https://github.com/hemagso/avgm

rately assess the sentiment of the reviewers
towards the game is to take “not bad” as a
unit of meaning (probably indicating that
the game is mediocre at best).

Machine learning models that analyze
the text word by word would be unable to
understand the intended meaning in these
two examples. Methods that can account for
the position of words in a sentence and their
relation to each other are necessary when
dealing with this kind of data.

World knowledge dependence

“The trophy doesn’t fit in the brown
suitcase because it’s too big.”

What is too big? The trophy or the brief-
case? This might be a simple question for a
human but consider how much knowledge
not expressed in the sentence or on the
meaning of the words themselves a person
needs to answer this question. First, you
need to know that briefcases can contain
other things, while trophies cannot. Sec-
ondly, you need to know that an object can
only be contained by a larger object.

This sentence is an example of a Wino-
grad schema, an alternative to the Turing
test proposed by Hector J. Levesque as a
means to test for machine intelligence
(Levesque et al., 2012). The sentences in a
Winograd schema are obvious for a human
reader, but exceedingly difficult to ma-
chines due to the large amount of world
knowledge or indirect reasoning necessary
to solve their ambiguity. (Humans usually
will not even notice that there is any ambi-
guity at all!)

Although some recent methods have
achieved accuracy rates of over 90% by ex-
ploiting extremely complicated deep neural
networks and pre-trained transformer
models (Kocĳan et al., 2020), the Winograd
schema stands as a good example of the
subtle challenges in natural language pro-
cessing.

Ambiguity

Consider the following sentence:

“I went into the forest, where I found
a bat.”

What did I find in the forest? Was it a
small flying mammal, or a long piece of
wood? Both answers are possible for this
sentence, and without further context no
correct answer can be given. Differently
from Winograd schemas there is no prior
world knowledge that can 100% disam-
biguate the meaning of this sentence. Hu-
mans might disambiguate it based on their
prior beliefs on how likely each encounter
is,1 and machines can take a similar ap-
proach.

Language detection

Humans around the world speak lots of
different languages. It is hard to pin down
an exact number, as languages are con-
stantly evolving and the distinction be-
tween a language and a regional dialect can
be hard to define. As of the writing, there
are 7,139 languages recognized by the Eth-
nologue, a reference publication on the
topic (Eberhard et al., 2021).

Although NLP models can be trained on
datasets consisting of multiple different
languages (and some applications such as
Machine Translation in fact require such
datasets), it is often useful to split your
problem into individual languages and
then train specialist models for each. This
way, your model does not need to learn
how to deal with things like false friends –
words that are written or sound similar in
two different languages but mean com-
pletely different things. For example, “par-
ente” in Portuguese is a false friend for
“parent” in English: the former refers to any
person belonging to your family, while the
latter is more specific, referring only to your
mother and father.

 This, however, introduces another prob-
lem: how can we automatically detect the
language of a text? I will discuss this prob-
lem in more detail below, but for now, let us

The Angry Video Game Model

91 Actually, no. They would probably ask me “What do you mean? Like, the animal?” instead of assuming some-
thing and risk making a fool out of themselves.

explore a few more challenges for NLP
models.

Spelling errors

People make mistakes, and written lan-
guage is not an exception. While humans
are rather good at correcting these mistakes
(by noticing typos, erroneous pronuncia-
tion or context), machines are terrible at
that. One of the first steps in almost all NLP
models is tokenization, in which the text is
split into small pieces that are mapped to a
predefined set of tokens, and a misspelled
word would not map to any of these, caus-
ing what is usually called an “Out-of-vo-
cabulary” token – a token that the model
never met before. The effect of these can be
severe on predictions. Consider the follow-
ing example:

“This game is awful.”

This review might be tokenized into the
following tokens, all of which are known by
the model, having been assigned a senti-
ment score during training.

In this hypothetical example, the pres-
ence of the word “awful” allows our simple
“Bag-of-words” model to estimate a nega-
tive sentiment for this review. But consider
what would happen in the next misspelled
example:

“This game is aful.”

The model has never met the word
“aful”, so it does not know what to make of
it. It might assign it an average score,
wrongly classifying the sentence as a neu-
tral sentiment.

This problem can be partly alleviated by
increasing the size of your token set to ac-
commodate common misspellings of
words. However, it is impossible to account

for all occurrences, and there is a trade-off
between model training time and perfor-
mance and vocabulary size. A lot of re-
search has gone into developing tokeniza-
tion methods that can deal with this kind of
issue, and some of them will be explored
further below.

Domain-specific vocabulary

Domain specific vocabulary happens
when a specific word has a different mean-
ing within a specific domain when com-
pared to its everyday usage. These are quite
common in science, requiring a reader to
consider the topic of a text when deciding
on the meaning of a word. For example,
when dealing with set theory an “element”
refers to an individual member of a set. If on
the other hand we are discussing chemistry,
an “element” refers to a chemical element, a
substance consisting of atoms that have the
same number of protons in their nucleus.
When talking about a game, an “element”
might refer to elemental spells, such as
“Fire”, “Air”, or “Lightning”, a feature
common to many magic systems in games.

This problem is more severe when you
are trying to build a generalist language
model, as the model will need large vol-
umes of data to learn how to differentiate
between meanings. Since we are dealing
with a narrow application in this article
(sentiment classification for game reviews),
we will not discuss this problem in depth.

High dimensionality and sparsity

Finally, we discuss a problem that is not
exclusive to NLP, but rather it is something
that needs to be considered for most ma-
chine learning problems. The curse of di-
mensionality refers to phenomena that arise
from dealing with high-dimensional spa-
ces. In machine learning it is usually related
to the fact that with an increase in dimen-
sionality of your dataset there is an expo-
nential increase in the amount of data re-
quired to cover all the space.

Let us work with a hypothetical example

Journal of Geek Studies 11(1): 7-34 (2024).

Soares, H.M.

to illustrate this problem. Imagine a classi-
fication model that takes as input 3 nominal
variables, each with 10 categories. In this
example, we would need at least 1,000 dif-
ferent training examples to cover the whole
space. Now consider what would happen if
instead we had 10 nominal variables with
10 categories each.

This curse of dimensionality affects text
classification in a very particular way. One
approach when modelling text data is to
create dummy variables for each possible
word:

The English language, however, has a lot
of words.2 If we consider a small vocabu-
lary set of just 1,000 words, the number of
combinations needed to cover this space is
greater than 10301.

Language space is also sparse, having
most of the dummies described above as-
signed a value of zero. This happens be-
cause most texts use only a small subset of
the vocabulary of the English language.
Even The Lord of the Rings, a masterpiece of
481,103 words famous for its elaborate de-
scriptions and flowery language uses only
15,493 distinct words (LotrProject, n.d.).

This high dimensionality and sparsity
provide several challenges for training ma-
chine learning models. We will discuss
“Word Embeddings”, a common method
for dealing with this problem further in this
article.

DATA & PREPROCESSING

Data description

For this study I collected data from the
review aggregator website Metacritic
(www.metacritic.com). The data are com-
prised of 644,268 user reviews for 15,931
different videogames.3 Each review is also
associated with an ID that uniquely identify

the user who made the review, as well as
the publication date of that review on the
website. Table 1 describes the fields avail-
able on the dataset.

Unfortunately, I cannot make the dataset
available for further research as the con-
tents of the review themselves are copy-
righted by CBS Interactive, who owns
Metacritic, as stated in their Terms of Use
(https://cbsinteractive.com/legal/cbsi/
terms-of-use/).

Data preprocessing pipeline

Language detection

Metacritic is a website with global pres-
ence and users from a multitude of nation-
alities can post reviews there. Although
most reviews are written in English, there
are other languages represented on the
dataset, and the website provides no struc-
tured data on what that language is. I uti-
lized the langdetect python package
(Nakatani, 2010) to identify the languages
of the reviews, yielding a total of 46 differ-
ent languages. The distribution of reviews
among the top-10 most common languages
on the dataset is shown in Table 2.

As expected, most of reviews are written
in English. As I do not have enough data to
train our model in multiple languages, I
opted to work only with English reviews
from this point forward.

11

2 There are currently over 550 thousand entries on Wiktionary for English (Wiktionary, 2020), and native speakers
usually have a vocabulary of around 10,000 words.
3 This count considers games available in different platforms as entirely different games. For example, Skyrim on
PC, PS4, Xbox, and Amazon Alexa counts as four different games.

Table 1. Dataset description.

The Angry Video Game Model

http://www.metacritic.com
https://cbsinteractive.com/legal/cbsi/terms-of-use/
https://cbsinteractive.com/legal/cbsi/terms-of-use/

Train / validation / test split

When training machine learning models,
it is important to have a method to estimate
your model performance in unseen data,
that is, data that was not used to train the
model. This avoids overfitting, a common
problem when training large models in
which the model ends up “learning the
training data by heart” and performing
poorly in unseen data.

Various methods exist to estimate the
performance of the model on unseen data,
but the simpler method is to simply holdout
a fraction of your data, not using it to train
your model parameters. This method, aptly
called the holdout method, has the down-
side of reducing the amount of data avail-
able for the model to learn from. However,
since I have enough data for my purpose, I
decided to use it. I split the data into three
different sets:

• Train set: data used to train the
model weights through back-propaga-
tion;

• Validation set: data used to choose
which model architecture is the best for
this problem and to calibrate models hy-
perparameters;

• Test set: data used solely to estimate
the performance of the final model on
unseen data.

I reserved 10% of the dataset as the Vali-
dation set and 10% more as the Test set,
leaving 80% of the data for model training.

Table 3 shows the number of records in
each set.

Tokenization

The last step on our pre-processing pipe-
line is tokenization. As mentioned above,
tokenization is the process through which
we segment a text into a sequence of mean-
ingful tokens. These tokens (after being
converted into numerical id’s that can be
manipulated with math) are then fed into
our machine learning models for training
and predictions.

The choice of tokenization method can
have a huge effect on how easy a model is
to train, as it effectively sets the minimum
level of detail from which a model can de-
rive meaning. Hence, it is usually a trade-
off between having a token that is large
enough to convey sufficient information by
itself and the overall number of distinct to-
kens in your dataset (also known as your
vocabulary size). To illustrate this trade-off,
consider the following choices for tokeniza-
tion:

• Letter tokenization: each different
letter and digit is a separate token;

• Word tokenization: each group of
characters separated by whitespace or
punctuation marks are a separate token;

• Sentence tokenization: each differ-
ent sentence is a different token.

Let us use a quote from AVGN episode
“Hong Kong 97” to illustrate the differences
between these three methods: “I've been
called upon to take care of business once again.
Apparently, there is a game worse than Big
Rigs. WORSE than Dr. Jekyll and Mr. Hyde.
WORSE than CrazyBus or Desert Bus. It is
known as Hong Kong 97, and I've been getting
requests for it up the butt.”

Journal of Geek Studies 11(1): 7-34 (2024).

Table 2. Language distribution of reviews.

Table 3. Train / Validation / Test split.

Soares, H.M.

Table 4 shows the length of the se-
quences produced by each tokenization
method, and the number of distinct tokens
produced. Notice how the number of to-
kens needed to represent the text decreases
with token complexity. This means that
each token conveys more information.

On the other hand, the uniqueness of
each token also increases with token com-
plexity. Letters will be repeated quite often,
as well as most words.4 On the other hand,
it is rare for full sentences to be repeated
(and those which are probably phatic con-
structions or other types of uninformative
sentences). This is a problem for us since we
need many examples of a token to allow our
model to learn how it should deal with it.

A lot of different methods of tokeniza-
tion have been tested for natural language
processing, and today most models use a
sub-word unit approach. That method is
somewhere between our letter tokenization
and word tokenization. Sub-word methods
have several useful properties that help us
to better deal with misspellings and rare
words, as we will see on the next section.

Sub-word units

Let us explain why we would want to
use tokens smaller than a word with an ex-
ample. Consider the following excerpt from
AVGN episode “Plumbers don’t wear ties”:
“Oh, so is he a plumber? Well, the game’s
called Plumbers Don’t Wear Ties, so I guess it
makes sense: he’s a plumber, and I don’t see him
wearing a tie… [Images of John wearing a
tie] ...WHAT THE HECK?! You can’t even
trust the darn title!”

Take note of the two highlighted words,
“plumber” and “plumbers”. One tokeniza-
tion option if to consider both as separate

tokens. However, the model would see
them as completely unrelated, and would
need a lot of data to learn the relationship
between them.

Another option is to create two separate
tokens: “plumber” and “#s”. The first token
is just the word plumber by itself, and the
second token is just the letter s (The # sym-
bol indicates that this token is appended to
another token to form a word). Table 5 com-
pares the tokenization of these words.

In the sub-word representation both
words share a token. In this way, the model
does not need to learn that both words are
related. It only needs to learn that the token
“#s” usually means that the previous token
is plural. And there are much more exam-
ples of plurals for the model to learn this
than examples of the words “Plumber” and
“Plumbers”.5 This is even more useful for
rarer words. Consider the word “supernat-
urally”, for example. There are many more
examples of the word “supernatural” than
“supernaturally”, as can be seen in Figure 1,
extracted from Google N-Gram viewer. It is
easier for the model to learn the meaning of
“supernatural” and then learn the meaning
of “#ly” as the adverbial form from all other
adverbs on the dataset than trying to learn
the meaning of “supernaturally” by itself.

13

Table 4. Statistics for different tokenization methods.

4 Unless we are dealing with rare words such as “gobbledygook” or “winklepicker”. Yes, those are real words.
5 Despite the existence of a very prolific game series with a plumber character.

Table 5. Word vs. sub-word tokenization examples.

Figure 1. Occurrence over time for “supernatural”
and “supernaturally”.

The Angry Video Game Model

For this work I opted to use the Word
Piece tokenizer model. First proposed by
(Wu et al., 2016) to address the problem of
segmenting Korean and Japanese text,6 this
method was then adopted to automatically
segment text into sub-word units. Its main
advantage is being unsupervised, allowing
us to learn the best token representation di-
rectly from the corpus and without the use
of any annotated data. I trained the tok-
enizer on our train corpus to produce a vo-
cabulary of 30,000 tokens, using the imple-
mentation available in the tokenizers python
library (huggingface, 2021) with the follow-
ing parameters:

• Normalization: I used the same nor-
malizer as the one used by the BERT
language model (Devlin et al., 2018).
This normalizer replaces all types of
whitespace characters by the common
whitespace, replaces accented charac-
ters by their unaccented version, and
applies lowercasing to all characters;

• Pre-tokenizer: I used the same pre-
tokenizer as BERT, splitting on white-
space characters and punctuations to
produce the first tokenization.

The details on the tokenization process
are beyond the scope of this text. If you are
interested in learning more, please check
the accompanying jupyter notebooks avail-
able on Github (https://github.com/
hemagso/avgm) where I go in more details
about the process. To test the tokenization,
let us check how it tokenized the following
phrase:

“Feast your eyes on this accursed non-
sense.”

[‘feast’, ‘your’, ‘eyes’, ‘on’, ‘this’,
‘accur’, ‘#sed’, ‘nonsense’, ‘.’]

Everything seems to be working fine.
Most common words consist of a single to-
ken, but the word “accursed” was split in
sub-word units. With this step out of the

way we can now proceed to discuss my
modelling methodology.

The final step is converting the sequence
of tokens into a sequence of numerical IDs,
as models need things to be converted into
numbers for them to be able to operate on
them. For tokenizers, each unique word in
the vocabulary is assigned during training
a unique ID. In the case of the example
above, it is:

[16746, 1456, 4308, 1360, 1358, 4305,
5417, 6438, 15]

METHODOLOGY

Approaches to text classification

How can computers understand human
languages? After all, computers are engi-
neered to deal with numbers, and their lan-
guage if one of numbers and symbols, rigid.
Can computers understand the nuances of
human language, with all its intricacies and
beauty? Can a machine write a poem?
Maybe.7 But first we will need to help it turn
language into math. In this section I will
discuss different approaches that can be
used to train text classifiers from labelled
tokenized text.

Bag-of-words models

Let us go back to the sentence we tok-
enized above:

[16746, 1456, 4308, 1360, 1358, 4305,
5417, 6438, 15]

The actual IDs here have absolutely no
meaning and are completely arbitrary. The
first step when modelling is deriving a use-
ful representation of our data. One of the
simplest options is calculating the count on

Journal of Geek Studies 11(1): 7-34 (2024).

6 Tokenization is a challenge in these languages because, in contrast to most languages based on the Latin script,
Korean and Japanese words are not whitespace-separated. For example, can you spot the boundaries between
words in the following text? 日本語を勉強しましたが本当に大変でした
7 Surprisingly, yes (Lau et al., 2020), although others will have to judge its quality.

Soares, H.M.

https://github.com/hemagso/avgm%202
https://github.com/hemagso/avgm%202

the text for a specific word and using this
count as features for a classifier. This ap-
proach is called bag-of-words, and it is sur-
prisingly effective for some application.
Bag-of-word Naïve Bayes classifiers were
one of the first effective spam filtering ap-
plications (Delany et al., 2013). This type of
classifier works on the assumption that the
mere presence of a word is informative
about the dependent variable. In our review
prediction problem, for instance, we could
select words that are known to have a nega-
tive or positive sentiment to be part of our
bag-of-words and use this to predict the
sentiment for reviews:

• Positive words: good, great, excel-
lent, masterpiece, incredible, mar-
velous;

• Negative words: bad, awful, terri-
ble, trash, stupid.

This approach, however, has some flaws.
It cannot take the context of the words into
account, as all information about where the
word is in the sentence is lost. For example,
if we use the bag-of-words listed above we
would not be able to properly classify the
phrase “This game is not bad.” This is partic-
ularly important in cases where the word
might not be informative by itself but is a
powerful predictor when in context. In the
sentences “This game is very bad” or “This
game is slightly bad” the highlighted words
are only informative in the presence of the
word “bad”. This weakness can be miti-
gated by building not a bag-of-words but a
bag-of-n-grams. For example, we could cal-
culate the counts of the 2-grams (“very”,
“bad”) and (“slightly”, “bad”) and use
those counts as features for our model.
However, this starts to introduce a whole
bunch of new challenges. How do I select
the words in my bag of words? How can I
find n-grams that are informative and
should be included? The bag-of-words is a
simple and surprisingly effective approach
and you should definitely start with it be-
fore trying more complicated approaches –
an advice that I will completely ignore in
this article as I go forward to talk about Se-
quence Models.

Sequence models

So, how can I make use of the informa-
tion provided by the order of the tokens in
our sentence? Well, a good place to start is
by not throwing it away at all. Sequence
models consume the raw sequence of to-
kens as its input, allowing us to build archi-
tectures that can make use of the order in-
formation on the sentence.

However, this introduces a new prob-
lem. Models need not only be finite, but also
of a fixed size. As we need to train the pa-
rameters in advance, the number of param-
eters and how they are related to each other
need to be determined ahead of time. Text,
however, can be of arbitrary length, and our
model need to be able to deal with reviews
such as “It is good” as well as “This is an
amazing piece of gaming history. The developers
were probably inspired by God’s angels when
they were writing each single line of code of this
masterpiece.”

In this article we make use of recurrent
architectures to solve this problem. Recur-
rent neural networks work by having an in-
ternal state of fixed size. An also fixed func-
tion is used to update this hidden state
based on the current element of the input
and the previous value. After applying this
function on all elements of the sequence we
are left with a fixed size state vector that can
then be fed into a classifier to produce pre-
dictions. To illustrate how this type of
model can work let us use a very simple
mock example with a recurrent model com-
posed by the following components:

• A 2-dimensional hidden state

• An input stream where:

• An update function

 where

15

The Angry Video Game Model

Before we go through an example, try to
figure out what this recurrent rule does.
What does h0 represents? How about h1? Let
us run through some examples.

Example 1: “This game is good”

Example 2: “This game is bad”

Example 3: “This game is not good”

Example 4: “This game is not bad”

Notice that both negative sentiment ex-
amples got a negative h¹ by the end, and
both positive sentiment examples got a pos-
itive one, despite examples 3 and 4 express-
ing those sentiments using a negation
clause. The model was able to do that be-
cause it used h0 as a memory of whether or
not the previous word in the sequence was
a negation word, allowing it to properly as-
sess the sentiment of the words good or bad
in context.

Of course, this is a toy example that only
serves to illustrate the mechanism through

which recurrent models can understand
context. In practice, it is almost impossible
to interpret the update function and the
meaning of each element of the state vector
in the way we did here. However, we can
learn this function and representations
from the data! This is the basic principle be-
hind Recurrent Neural Networks, the
method of choice for this article.

Word embeddings

Until now we have been using the index
for the word as a categorical feature for our
model, representing them by their indices.
In practice, categorical features are usually
represented by an encoding scheme known
as one-hot encoding, where an indicator
variable indicates the presence of a cate-
gory:

This can work fine for small vocabulary
of tokens, but as the vocabulary increases,
we quickly start facing the problems of
high-dimensionality and sparsity men-
tioned above. For our 30,000 words vocabu-
lary, each element of our sequence (that is,
every sub-word unit for our samples)
would need to be represented by a 30,000-
long vector of a single “one” and 29,999 “ze-
ros”.

One way of dealing with this problem is
by using word embeddings. Word embed-
dings reduce the size of the representation
of each word by replacing the long and
sparse Boolean (only zeros and ones) vec-
tors by smaller and dense (containing any
real number). The nice thing about embed-
dings is that not only they can be trained
from your data, but they can also be learned
from unlabeled data. Below we illustrate an
example for an embedding of size 4:

Journal of Geek Studies 11(1): 7-34 (2024).

Embedding has many interesting prop-
erties, and there is a lot of research on meth-
ods to build embeddings. For a detailed ex-
planation of embeddings, I recommend the
work of Alammar (2019).

I will start with a simple sequence
model. This will establish a baseline perfor-
mance level for this task and justify some
design choices that we will make going for-
ward. It is also good practice when dealing
with a new application: we start with the
simplest model and build it up to address
weak points identified along the way.

Model design

Our first model will be a Vanilla Recur-
rent Neural Network. The model has the ar-
chitecture shown in Figure 2. Do not worry
right now about what exactly a Recurrent
Layer is; we will get into more detail about
it later on.

Figure 2 describes the parameters of each
layer, such as Embeddings Sizes and Hid-
den Sizes. I also noted the output tensor size
(which is useful to wrap your head around
on how each layer transforms its input) and
the number of weights on each layer (which
will be particularly useful when we are
comparing different model architectures).

Model training

I trained this model on the train dataset
described above. The training ran for 20
epochs, and at the end of each epoch perfor-

mance metrics were collected both for the
training set and the validation set. The
model was trained using Negative Log
Likelihood Loss, with the Adam optimizer
(Kingma & Ba, 2015) with default parame-
ters (Learning rate = 0.001; β1=0.9; β2=0.999)
used for gradient descent.

Model evaluation

To evaluate the model, I used the follow-
ing model level metrics:

• Loss: the Negative Log Likelihood
value;

• Exact Accuracy (ACC): the percent-
age of ratings that were perfectly pre-
dicted by the model;

• Accuracy ± 1 (ACC1): the percent-
age of ratings that were wrong by at
most 1 rating;

• Mean Absolute Error (MAE): the av-
erage distance between the true rating
and the predicted rating.

I also evaluated the following class level
metrics to assess the quality of the predic-
tion:

• Recall: the percentage of records
with a certain rating that were predicted
with said rating;

• Precision: the percentage of records
predicted with a certain rating that were
indeed of that rating.

All metrics were calculated for both train
and validation datasets.

Model level metrics

Let us start by looking at the model level
metrics, and how they varied during train-
ing (Fig. 3). We can see that on average all
metrics improved with training (Fig. 3), al-
though there is a lot of variation on both the
training and validation set. This could be an
indication that our model is having trouble
learning and that we might need a larger or
more sophisticated model.

17

Figure 2. Simple model architecture.

The Angry Video Game Model

Using loss as our selection criteria, we
see that the model achieved the best gener-
alization (performance on unseen data) on
Epoch 13:

So, how good is this model? Since this is
the first application on this dataset, we do
not have any established benchmarks. In
this case, it is useful to look at the perfor-
mances achieved by other models on simi-
lar datasets.

State-of-the-art (SOTA) performance on
the IMDB dataset (a dataset with movie re-
views and associated sentiment) showed
96.21% accuracy (NLP-progress, 2021). So,
our model is awful, right? Wow, not so fast!
The IMDB dataset collapses the rating mea-
surement scale, classifying all ratings 6 and
below as negative, and all ratings 7 and
above as positive. That reduces the task to a
binary classification! So, our accuracy met-
rics are not comparable with the IMDB
dataset.

The most comparable benchmark I could
find was the Yelp dataset (a dataset with re-
views extracted from www.yelp.com),
which has a 5-level measurement scale for
ratings. SOTA for this application achieves
72.8% accuracy. This indicates that, yes, my
model is probably bad and that we should
probably use a better architecture. (This
was already indicated by the volatile loss
training curve, but it is always nice to have
further evidence.) Before trying to build a
new model, however, let us explore a bit
more this first attempt – we might learn
some other useful things to incorporate into
new attempts.

Class level metrics

Let us now look on class level metrics.
These metrics will allow us to know if our
model has a good performance predicting
all ratings, or if for some reason it predicts
some ratings better than others.

Figure 4 shows both Recall and Precision
metrics for each of our classes, and we can

Journal of Geek Studies 11(1): 7-34 (2024).

Figure 3. Model level metrics for a simple model over training epochs.

Soares, H.M.

http://www.yelp.com

immediately notice something funky is go-
ing on. The model seems to perform way
better when predicting ratings 0 or 10. Re-
call for both these ratings is high, indicating
that we correctly “retrieve” 80% of these
ratings. However, Precision is way lower,
indicating that this outstanding recall may
in fact be caused by the model favoring
these two ratings instead of the other 9 pos-
sibilities. Why would that be?

A quick look on the distribution of our
data reveals the issue. Figure 5 shows the
distribution of ratings in our dataset along
the distribution of our model’s predictions.
The thing is: review ratings usually have an
unbalanced distribution. In our case, over
half the reviews is either 10 (“This is the best
game ever.”) or 0 (“I hate this game with the

power of a thousand suns.”). Consequently,
our optimization process ends up prioritiz-
ing getting those two ratings in detriment of
the others, polarizing our reviews even
more.

Situations like this are an example on
why we should not only analyze model
level metrics but also use class level metrics
in the analysis. I will discuss which design
decisions we can make to avoid this issue in
later sections.

Individual predictions

It is also always useful to look at individ-
ual predictions made by our model. You
might get qualitative insights that you
would not notice from the aggregated data.
To that end, I picked three sentences from
three different AVGN episodes.

Dr. Jekyll and Mr. Hyde: “You'd think
I'm jokin', like I'm trying to be funny or some-
thin'. But, no, the fact that that game exists is a
horrible abomination of mankind. That game is
so freaking horrible, and I am not kidding”
(AVGN, 2010).

Here we can see that the model captured
the overall sentiment of the sentence, with
the largest probability being assigned to rat-
ing 0, with a longer tail towards intermedi-
ate ratings.

Earthbound: “I am blown away. That was
one of the craziest games I've ever played. Sure,
it has flaws but I think it does belong on the list
of mandatory Super Nintendo games” (AVGN,
2018).

19

Figure 4. Precision and recall metrics for the simple
model.

Figure 5. Actual and predicted class distribution for
the simple model.

Figure 6. Cover art (source: Wikipedia) and predicted
scores for the game Dr. Jekyll and Mr. Hyde.

The Angry Video Game Model

Soares, H.M.

Here we can see that the model is very
sure of the positive sentiment of the review,
assigning most of the probability to a 10 rat-
ing.

Castlevania 64: “The graphics are good, for
Nintendo 64 standards, but I find them unap-
pealing, because it's the beginning of the 3D
age, and they haven't perfected it yet. It's that
awkward period between the old and the new”
(AVGN, 2009).

This is a mixed review, and it shows one
of the flaws that the model has right now.
Note how there are peaks on both rating 10
and rating 0, with a valley in between. Isn’t
this weird? How can the model assign a
high probability for both 10 and 0, and not
to anything in between?

This happens because the model has no
idea that there is an order associated to the
ratings. It has no idea that if the probability
for a rating 10 is high, the probability for a
rating 0 should be low. It treats the ratings

as an unordered categorical scale, also
known as a nominal scale. Below, I discuss
how we can make the model aware of the
order of the scale, and what trade-offs that
entails.

Model design choices

As we saw in the previous section there
are several issues with the current model:
poor performance overall vs. SOTA bench-
marks; poor Recall and Precision on inter-
mediate ratings; unawareness of the ordinal
nature of the ratings.

All these issues stem from design deci-
sions we made when building our model.
In this section, I will present which deci-
sions those are and discuss options to im-
prove the model.

Journal of Geek Studies 11(1): 7-34 (2024).

Figure 8. Cover art (source: Wikipedia) and predicted game scores for the game Castlevania 64.

Figure 7. Cover art (source: Wikipedia) and predicted game scores for the game Earthbound.

Target variable measurement scale

Not all measurements are created equal.
Consider the following measurements asso-
ciated to myself:

• my country of residence is Brazil;

• I am the eldest son in my family;

• I live near latitude -23.6 and longi-
tude -46.7.

• as of the writing of this article, I am
32 years old.

There are different things that I can do
with each of those measurements. I can
compare my country of residence to an-
other person, but I cannot calculate what
“twice my country of residence” would be.
You can know that my age is greater than
my brothers’, but without any extra infor-
mation you cannot know by how much.
These are examples that show that there are
different types of measurements, and it is
useful to be aware of that when building
machine learning models.

There has been some work in statistics
and measurement theory to create defini-
tions for the different types of measure-
ment. For instance, Stevens (1946) proposed
a four-level measurement scale (Nominal,
Ordinal, Interval, and Ratio). Other re-
searchers, such as Mosteller & Tukey (1977)
and Chrisman (1998), proposed more so-
phisticated classifications, with 7 and 10 dif-
ferent levels, respectively. I found in prac-
tice however that Stevens’ taxonomy works
well to discuss machine learning. But what
exactly is each kind of measurement?

• Nominal: nominal measurement
scales differentiate between values
based on their identity. Other than that,
no other comparisons can be done on
measurement scales. For example, you
cannot rank order them or calculate the
difference between them. In the exam-
ples above “Country of residence” is a
nominal scale variable. You can say that
Brazil is different from the United States
of America, but you cannot rank order
them8 or calculate the difference be-
tween Brazil and USA.9 Other examples
of nominal scales are Gender, Lan-
guage, and Favorite Book.

• Ordinal: Ordinal measurement
scales are like nominal scales, but they
have an intrinsic order associated to
them. You still cannot calculate the dif-
ference between them, but you can de-
termine if one is greater than another,
allowing one to rank order them. In the
examples above “eldest” is an ordinal
measurement scale. You know that by
being the eldest my age is greater than
my middle and youngest brothers’, but
you cannot know by how much. Other
examples of ordinal scales are Likert
scales that are commonly used in sur-
veys to measure agreement level, and
star ratings on Amazon.com reviews.

• Interval: Interval measurements are
something that most of us might call a
numerical measurement. We can not
only compare and rank them, but also
calculate the difference between two

21

Figure 9. The XKCD model design approach (source:
https://xkcd.com/1838/).

8 You can rank order them on other associated measurements, such as GDP, population, or HDI, but in those cases
the measurements being ranked are those indices, not the countries themselves.
9 Although you could argue that this difference is at least a couple of caipirinhas.

The Angry Video Game Model

https://xkcd.com/1838/

Soares, H.M.

values. However, interval scales have
an arbitrary zero value and, as such,
their ratios are not meaningful. My loca-
tion in latitude and longitude is an ex-
ample of an interval scale. You can say
that the difference between my latitude
and someone located in Cambridge,
MA, is 66 degrees. But it makes no sense
to say that the ratio between my latitude
and the latitude of someone in Cam-
bridge, MA, is -0.56. Other examples of
interval scales include temperatures on
both Fahrenheit and Celsius scales.10

• Ratio: Ratio measurements are like
interval measurements, but their scale
has a well-defined and usually non-arbi-
trary zero scale so that calculating ratios
make sense. In the examples above, my
age is a ratio scale. It makes sense to say
that I am twice as old as my brother.
Other examples of ratio measurements
include income and temperatures mea-
sured on the Kelvin scale.

Now that we know the four types of
measurement scales, which one do you
think best applies to videogame ratings in
our dataset? We can say that one rating is
greater than another, so nominal is out of
the picture. But is the difference between
two ratings meaningful? And more than
that, is it consistent across the scale? Con-
sider the following two completely unre-
lated and hypothetical cases:

• after much deliberation, you de-
cided to increase your rating for this ar-
ticle from 2/10 to 3/10;

• after much deliberation, you de-
cided to increase your rating for this ar-
ticle from 9/10 to 10/10.

Do you feel that the increase in rating in
both cases is the same? Most people would
argue no. The first increase changed the ar-
ticle from a bad article to a slightly “less
bad” article. The second case, on the other
hand, elevated it from a very good article to
perfection! (Thank you, by the way.) How-
ever, people calculate metrics such as aver-

age scores all the time and, strictly speak-
ing, you should never do that to ordinal
scales! What gives?

The fact of the matter is that this is a con-
troversial topic (see Knapp, 1990) into
which we will not delve further. In this arti-
cle we will compare the choice between
modelling ratings as a nominal variable (in
which the model is unaware of order) and
as an ordinal variable (in which order is
considered). It is possible to also model this
target variable as an interval scale, although
we need to take some extra care to avoid out
of domain problems for our predictions (for
instance, our model assigning a rating of 13
or -3 for a game).

Class weights

Review ratings (outside specialized me-
dia) have an exceedingly unbalanced distri-
bution, as it is quite common for people to
give a game a 10 if they liked it, or a 0 if they
disliked it. This makes our model care more
about getting 0’s and 10’s right than getting
other ratings right, as we saw in the preci-
sion and recall metrics for our simple model
(Fig. 5). Although this is the approach that
maximizes overall accuracy, this can some-
times lead to useless models (see Box 1 for
an example).

One way to correct for this is to assign
weights for each observation, increasing the
importance of the ones that are less fre-
quent. This way, even though there are less
reviews with a rating of 7, getting one of
them wrong will “hurt” more (from a loss
function standpoint) than getting a score of
10 wrong.

Take note that this will decrease our
model’s accuracy on the unbalanced
dataset, but it will probably yield a more
useful model in the end.

Journal of Geek Studies 11(1): 7-34 (2024).

10 And the Rankine, Rømer, Delisle, Réaumur or any other weird temperature scale that you might be using and
that is not Kelvin.

Model architecture

Another choice when designing our
models is the architecture that will be used
for our neural network. The architecture de-
scribes how each individual neural con-
nects to one another. Good architecture al-
lows us to reduce the model’s size by
exploiting some feature of the problem be-
ing addressed.

In previous sections, we hand-waved
our simple model architecture, just saying it
was a Recurrent Neural Network (RNN). In
this section we explain this architecture in
more detail and also introduce two other ar-
chitectures: the Long Short-Term Memory
(LSTM) and the Gated Recurrent Unit
(GRU).

• There will be a little bit of math on
this section, so we better get our nota-
tions straight:

• upper case letters represent 2-D ten-
sors (also known as matrices);

• lower case letters represent 1-D ten-
sors (also known as vectors);

• the operator represents the Hada-
mard product (also known as element-
wise multiplication);

• the symbol represents the hyper-
bolic tangent function;

• the symbol represents the sigmoid
function.

With that out of the way let us describe
our model architectures.

Recurrent Neural Networks (RNN)

The Vanilla RNN is one of the simplest
examples of a sequence model there is. The
model has a hidden state ht which is up-
dated at each time step of the sequence,
based on the input value at that time (xt: for
language models, this is usually some form
of embedding representation of the input
tokens) and on the value of the hidden state
from the previous step (ht–1). This update is
done by the following expression:

where: Wih and bih are tensors that de-
scribe how the input updates the hidden
state; Whh and bhh are tensors that describe
how the previous hidden state updates the
current one.

These tensors are shared among all time
steps in the sequence. This update rule can
be represented by the following computa-
tion graph (Fig. 10; the bias terms bih and bhh
were omitted for brevity).

Note that at each time step, the new state
is calculated as a combination of the current
input and the previous state. This way, the

23

Figure 10. RNN computation graph.

The Angry Video Game Model

Soares, H.M.

model has an internal memory that allows
it to remember elements seen in the past.
However, Vanilla RNNs have poor perfor-
mance on long sequences due to its inability
to “judge” if an input needs to be remem-
bered or not.11 For a Vanilla RNN both the
word “and” (a common uninformative stop
word) and the word “awful” (a highly in-
formative word for game reviews) are the
same in terms of whether they should be re-
membered by the internal hidden state.

Long Short-Term Memory (LSTM)

LSTM neural networks are a recurrent
architecture proposed by Hochreiter &
Schmidhuber (1997) to improve on the
long-term dependencies problem seen in
vanilla RNNs. This is done by introducing
an internal memory cell ct and some update
gates:

• the input gate it produces a scalar
between 0 and 1 that judges how much
influence the input should have on the
internal memory cell. One can interpret
this value as “what percentage of the in-
put should I keep on the internal cell
state?”

• the forget gate ft produces a scalar
between 0 and 1 that judges how much
influence should the previous cell mem-
ory state have on the new internal mem-
ory cell state. One can interpret this
value as “what percentage of the previ-
ous cell state should I keep?”

• the output gate ot produces a scalar
between 0 and 1 and judges how much
influence should the internal memory
cell have on the output value (the hid-
den state ht). One can interpret this
value as “what percentage of the cell
state should I output?”

These gates and their dynamic can be
represented by the following expressions.
Note how the use of the sigmoid function
guarantees the scalar [0, 1] domain on the
output of each gate.

I will not describe all tensors here, as the
notation is analogous to the one used for
RNNs. Again, all weight tensors W and b
are shared among all time steps. However,
as the gates depend on the input and on the
hidden state, the LSTM can learn to weight
the importance of different inputs and

Journal of Geek Studies 11(1): 7-34 (2024).

11 This is an oversimplified analogy, but I find it helpful to understand how clever design of networks and exploit-
ing characteristics from your application can facilitate training. In theory, Vanilla RNNs can model arbitrarily long-
term dependences on the input sequence. However, the finite precision of computers leads to numerical problems
when training them via back-propagation, as the error gradients tend to vanish or explode as we move through
time.

which inputs are worth remembering. As
with RNNs, we can represent the update
rule with a slightly more complicated com-
putation graph (Fig. 11). LSTMs have seen a
lot of success in a wide range of applica-
tions, from speech recognition to beating
human players in the popular game Dota 2
(OpenAI, 2019).

Which models are you training, after all?

After all the considerations made in this
section, I am finally ready to present which
models I ran for this article. I decided to
work with the following options for the de-
sign decisions we just discussed:

• Target measurement scale: Nomi-
nal and Ordinal;

• Class weights: Unbalanced and Bal-
anced;

• Model architecture: Vanilla RNN
(hidden size = 256) and LSTM (hidden
size = 128).

I will try all combinations between these
design decisions, yielding a total of 8 differ-
ent models, training every combination for
20 epochs. Note that I am using different
hidden sizes between the RNN and LSTM.
I did this to keep model capacity constant

between architectures so that we can at-
tribute any improvement to the change in
architecture itself. If we do not do this, we
would not be able to distinguish between
an improvement due to the architecture and
an improvement due to the increase on the
number of weights of the model.

RESULTS

After training all 8 models I can pick the
best one before scoring the Nerd’s reviews.
To that end, I will inspect the model level
metrics and class level metrics we discussed
above.

Model performance

Selecting the best epoch

For each model, I needed to select the
best epoch before comparing their perfor-
mance. This happens because although the
performance on the training set will usually
get better and better as you train your
model, the same cannot be said about the
performance on the validation set, which is
the one that matters. After a while, perfor-
mance on the validation set can start to de-

25

Figure 11. LSTM computation graph. For brevity I represent only a single time step here and, as before, omit the
bias tensors.

The Angry Video Game Model

Soares, H.M.

grade, which is an indicative that you might
be overfitting your training data that and
getting worse at generalizing to unseen
data.

With that in mind, I used the Negative
Likelihood loss value for that epoch as my
selection criteria for the model. Figure 12
shows how this metric behaved over train-
ing time.

As we’ve seen with the simple model be-
fore, both training and validation Loss are
highly volatile for models using the Vanilla

RNN architecture (Fig. 12). This is a strong
indicative that this model is too simple for
our problem, and that it might take too
much training time and data for it to
achieve a good performance. The LSTM ar-
chitecture, on the other hand, fared way
better, displaying a trend that is common
for machine learning models: a constant de-
cline on the training Loss as the model gets
better and better at predicting the data it al-
ready saw and a V-shaped behavior for the
validation loss as after a point the model
starts to overfit the data (Fig. 12).

Journal of Geek Studies 11(1): 7-34 (2024).

Figure 12. Loss over training time for RNN and LSTM.

Figure 13. Accuracy over training time for RNN and LSTM.

The best model will be the one with the
lowest validation loss. So, let us also take a
look on the Accuracy and Mean Absolute
Error (MAE) metrics before continuing
(Figs. 13 and 14, respectively).

Notice that, unlike what was seen for
loss both accuracy and MAE are stable or
even improve for the validation set beyond
the point in which the model started over-
fitting. This happens because Accuracy and
MAE take into account only the final pre-
dicted value, while the loss also considers
how confident the model is on the predic-
tion. Take the following examples:

• true review rating is 7, and the
model predicted 9 with 55% accuracy;

• true review rating is 7, and the
model predicted 9 with 98% accuracy.

Accuracy and MAE would be equally
impacted by these examples, while the Loss
would be much more affected by the second
example then by the first. As the model
overfits the training data it tends to get ever
more confident in its predictions, which in
turn makes its wrong predictions “hurt”
more and more. For this article I opted to
pick the epoch with the best loss for each
model. The results are summarized in Table
6.

Selecting the best model

Now that we have the best epoch for
each model, we can proceed to select the
best overall model. Since we want it to have
good performance predicting all classes, I
will use the precision and recall metrics,

27

Figure 14. Mean Absolute Error (MAE) over training time for RNN and LSTM.

Table 6. Best epoch for each model.

The Angry Video Game Model

Soares, H.M.

combined into a single metric using a
Macro-averaged F1-score described by the
formula below:

where Pi and Ri are the precision and re-
call for score class i, and N is the overall
number of classes. (The macro-averaged F1-
score is essentially the simple average be-
tween the individual F1- scores for each
class, which in turn is the harmonical mean
between precision and recall.) To calculate
that let us check what are the values for pre-
cision and recall for all the models (Fig. 15).

We can immediately see – even before
calculating any metrics – that the LSTM
Nominal models perform better than all
other variations (Fig. 15). Interestingly this
architecture seems to have been less af-
fected by the unbalanced dataset than the
others, though it is hard to tell by inspecting
the chart whether the balanced or unbal-
anced model performs better. Table 7
shows the F1-score for each model.

The unbalanced LSTM Nominal had the
best performance based on the F1 criteria
(Table 7). But the difference between it and
the ordinal model was not that big; and re-
member, our motivation for testing an ordi-

nal model was to make our predictions re-
flect better the ordinal nature of reviews.
Let us revisit those three examples from
above before making any decisions.

Dr. Jekyll and Mr. Hyde (Fig. 16):
“You'd think I'm jokin', like I'm trying to be
funny or somethin'. But, no, the fact that that
game exists is a horrible abomination of
mankind. That game is so freaking horrible, and
I am not kidding” (AVGN, 2010).

Earthbound (Fig. 17): “I am blown away.
That was one of the craziest games I've ever
played. Sure it has flaws but I think it does be-

Journal of Geek Studies 11(1): 7-34 (2024).

Figure 15. Precision and recall for each model.

Table 7. F1-score by model. (For some models, recall
or precision were both 0, which makes the F-1 unde-
fined. In this case I considered the F-1 score to be zero
for that class).

long on the list of mandatory Super Nintendo
games” (AVGN, 2018).

Castlevania 64 (Fig. 18): “The graphics are
good, for Nintendo 64 standards, but I find them
unappealing, because it's the beginning of the
3D age, and they haven't perfected it yet. It's
that awkward period between the old and the
new” (AVGN, 2009).

For both Dr. Jekyll and Mr. Hyde (Ad-
vance Communication Co., 1988) and Earth-
bound (Ape / HAL Laboratory, 1994) we see
remarkably similar output from both mod-
els. That is to be expected; both are very po-
larized reviews. However, the output for
Castlevania 64 (Konami Computer Enter-
tainment Kobe, 1999) is different, and we
see from this example that the model is bet-
ter able to take into account the ordinal na-
ture of the data. Although this did not im-
prove the accuracy of the model (in fact, it
decreased exact accuracy by almost 10 per-
centage points), I decided that it was a price
worth paying, especially when considering
that our off-by-one metric is very similar on
both models.

Predicting ratings for Angry Video
Game Nerd reviews

Well, it has come to this. After all this
work we will finally be able to assign
proper review scores to the reviews made
by the Angry Video Game Nerd. For this sec-
tion, I used the episode transcripts available
on the AVGN Wiki (https://avgn.fandom.
com/). As for which episodes to test, I
opted to score the Top 10 AVGN episodes,
as selected by the Nerd himself (Table 8). I
also added some of my favorite episodes
that were not on the top 10 (Table 9).

So, how did it go? Figure 19 shows the
predicted probability for each review, as
well as the expected value calculated by av-
eraging the classes.12

29

Figure 16. Predicted scores for Dr. Jekyll and Mr. Hyde
on both the nominal and ordinal model.

Figure 16. Predicted scores for Earthbound on both the
nominal and ordinal model.

Figure 16. Predicted scores for Castlevania 64 on both
the nominal and ordinal model.

12 Yes, exactly what I said you cannot do with an ordinal variable. But I did it anyway. It is a useful metric! Now
you see why this is such a hotly debated topic.

Table 8. Top 10 AVGN episodes.

The Angry Video Game Model

https://avgn.fandom.com/
https://avgn.fandom.com/

Soares, H.M.

Well, most things seem to make sense.
Games such as Mario 3 (Nintendo R&D4,
1988), Mega Man (Capcom, 1987) and Earth-
bound have almost perfect scores, which

make sense given the praise the Nerd gives
them in the reviews. On the other hand,
games such Hong Kong 97 (HappySoft,
1995) and Big Rigs: Over the Road Racing

Figure 19. Angry Video Game Model predictions for Angry Video Game Nerd reviews.

Table 9. Some of my favorite AVGN episodes, listed in no particular order.

Journal of Geek Studies 11(1): 7-34 (2024).

(Stellar Stone, 2003) have terrible scores. But
wait… what is this? Dr. Jekyll and Mr. Hyde
has a score of 5.4? This cannot be right. And
what about Castlevania (Konami, 1986) get-
ting a score of 1.2? The Nerd had mostly
praise for this game. What is happening
here? WHAT IS THE MODEL THINKING?

To answer this question, I had to dig
deeper. Something in those reviews is
throwing off the model.

What is the model thinking?

Machine learning models’ predictions
are extremely complicated to explain and
this one is no different. The model is essen-
tially a black box, and a lot of effort has been
put into it to understand why it made a pre-
diction. Machine learning is being used to
allocate investments, predict credit risk,
score test results, and even to drive cars. In

all these applications, being able to explain
a model decision is highly desirable, be it
from a legal standpoint (to explain to a cus-
tomer why they were denied credit) or from
a safety standpoint (to understand why an
autonomous vehicle thought it could drive
through a barn13).

There is a lot of research being done in
model explainability. Some works, such as
the LIME method proposed by (Ribeiro et
al., 2016), work by deriving proxy models;
that is, simpler, linear and locally bound ap-
proximations of the full model that can be
easily explained. Another approach is to
use salience mapping, in which parts of the
input are occluded from the model, and the
variations in the predicted output can give
us some insights on what is influencing the
prediction. The latter approach works well
for our problem, as we can feed parts of a
longer review to the model to get a local-
ized sentiment for a sentence.

To investigate the predictions of our
model, I ran them again multiple times.
Each time, a small sliding window of 5 lines
was cut out from the review, and the ex-
pected score was calculated by the model
using only the text in the sliding window
(“Only”) and using everything in the re-
view but the text on the sliding window
(“Except”). Figure 21 shows the results of
this analysis for Dr. Jekyll and Mr. Hyde and
Castlevania (part 1).

We can see that the predicted sentiment
can vary a lot throughout the review, as

31

Figure 20. What were they thinking? (source: AVGN).

Figure 21. Salience mapping for two AVGN episodes.

13 Maybe it was trained using Big Rigs: Over the Road Racing?

The Angry Video Game Model

Soares, H.M.

shown by the wild variations observed in
the blue line. However, the removal of a
couple of five lines usually has little effect
on the review, with a few exceptions. In Dr.
Jekyll and Mr. Hyde, removing the beginning
of the review significantly increased the
score, while removing the ending signifi-
cantly decreased it. Let us take a close look
on those sentences: “[The episode begins
with a black-and-white clip; the first few
seconds from the original Dr. Jekyll and Mr.
Hyde review from 2004. The Nerd's voice
can be heard over this.] In May of 2004, I
gave a warning about a game called Dr. Jekyll
and Mr. Hyde. I made it perfectly clear: DO
NOT PLAY THIS GAME. But from what I un-
derstand... people have played it! They didn't
listen. But it wasn't their fault... I only showed
about one minute of footage from the game, and
even though I talked about it at great length, it
didn't do any good... [The Nerd drinks some
Rolling Rock.] I called it a piece of ****. I called
it an awful pile of steaming goat ****. But that
was honoring it. I could've said anything, it
wouldn't have mattered. I could've taken a ****
on it, but my own **** would have been offended
to lay on this loathsome piece of FILTH! Just the
thought of covering this thing in doo-doo is like
encasing it in gold! I curse the day I ever laid
eyes on it. I curse the plastic that holds this
abomination. My words are insufficient in de-
scribing the total insult to humanity that this
"game" has provided! Everything that I've ever
said and anything that anybody else has ever
said is NOT enough! It MUST be shown. [He
drinks more Rolling Rock.]” (AVGN, 2010).

Well, okay. I see why this might have
such a large effect on the expected score. No
surprises here. Now let us look at the end-
ing sentences: “No...! [The scene fades to
black and fades back in a blur. The Jekyll-to-
Hyde transformation music from the game
plays as the Nerd wakes up, back in his
room, where he first transformed. He re-
sumes playing the game, and has an
epiphany.] The Nerd: I think I get it. Why, it’s
the best game ever made. It’s more than a game...
it exposes the dual nature of the human spirit.
The only way to win the game is to be Jekyll, but
you wanna be Hyde so you can shoot ****. You
see, it’s a constant battle between good and evil,
and Jekyll must stay farther along his path than

Hyde. If Hyde gains the lead, then evil will tri-
umph over good, and that’s the true conflict to
the human soul. And to deny the evil com-
pletely, would only force it into the subcon-
scious mind, like a city broken into different so-
cial classes. People don’t wanna step outside
their own boundaries, like Jekyll wandering into
the wrong section of town. He’s unwelcome.
Nevertheless, he must abide by his own good na-
ture. No wonder the cane doesn’t work. The
game does not reward you for acting upon your
malevolent intentions. It’s a proposed guideline
for a set of morality rules to be programmed in
real life! It uses the Victorian era as a fundamen-
tal depiction of outward respectability and in-
ward lust. It’s a metaphor for social and geo-
graphical fragmentation. It eludes the Freud
theory of repression, in which unacceptable de-
sires or impulses are excluded from the con-
scious mind, and left to operate on their own...
in the unconscious.” (AVGN, 2010).

Here we can see something interesting.
Taken at face value, the Nerd’s words seem
to sing high praise for the game. He makes
it sounds almost like a transcendent experi-
ence. But it is all good old sarcasm. Appar-
ently, the model did not learn enough to be
able to identify the true meaning of the
Nerd’s words.

The Castlevania example is less interest-
ing. The Nerd starts talking about how
good it was when it was launched, and the
impact it had in his life. But after that he
proceeds to talk about all the frustrating
parts of the game, and the model seem to
have found that part more relevant. The
bump in the orange line correspond to com-
ments by the Nerd on puns made on the
game credits sequence. Apparently, the
model really hates puns and the reviews are
being pun-inshed for it. “Hmm...Trans
Fisher? It reminds me of Terence Fisher, the di-
rector of many of the Hammer Horror films.
That's a funny coincidence. Oh wait... Vran
Stoker? Like Bram Stoker, the author of Drac-
ula? Wha-- Christopher Bee?! Is it a joke? I
don't get it. Are they saying Christopher Lee is
like a bee? [Bee with a face like Christopher
Lee's comes buzzing by] No, they can't mean
that. This is probably just a series of strangely
coincidental typos. [The Nerd notices another

Journal of Geek Studies 11(1): 7-34 (2024).

name] Belo Lugosi? Boris Karloffice? They're
just ******* around. Love Chaney Jr.? Mix
Schrecks? Green Stranger?! Is this supposed to
be funny? Like just take a celebrity's name and
change it around? That's like if I took the name
‘Stephen Spielberg’, and called him ‘Stephen
Jeelberg’. Like, that's not funny, that's kinder-
garten level! No, kindergarten students don't
find that funny! Aliens don't find that funny!
Well anyway, that's Castlevania for you. Good
game, but holy **** is it hard. Now as promised,
we're gonna plow through the rest of 'em, all the
old-school Castlevania games. The ones that I
grew up with— [The ‘What a horrible night
to have a curse’ box from Castlevania II: Si-
mon's Quest appears in front of the Nerd, in-
terrupting him. The box disappears a few
seconds later, and a day-to-night transition
in the style of said game is shown. The
nighttime music plays and the Nerd's room
looks darker than before. The Nerd notices
the Castlevania II: Simon's Quest cartridge]”
(AVGN, 2009).

CONCLUSION

Can a model truly capture the full emo-
tion of an AVGN review? Maybe time will
tell. In this article, however, I demonstrated
that Recurrent Neural Networks, in particu-
lar the LSTM architecture, have a good per-
formance on the videogame review rating
prediction task when compared to other
sentiment analysis benchmarks. I also
demonstrated that the model trained on
this dataset can produce coherent ratings14

for the reviews performed by the Angry
Video Game Nerd, barring issues of dealing
with sarcasm.

FURTHER WORK

As discussed in the start, this work fo-
cused on simpler model architectures to
make it more approachable. More ad-
vanced architectures such as Transformers
might be able to better deal with long term
dependences. I also only trained this model
on the review dataset data, and I did not

make use of transfer learning at all. Pre-
training on a larger and more general
dataset might improve the quality of the
embeddings. Testing contextual embed-
dings such as BERT (Devlin et al., 2018)
might also improve how the model deals
with context dependence ambiguity. Fi-
nally, training the model on longer reviews
might improve its performance on the
AVGN dataset, as the length of an AVGN
episode is several times longer than the av-
erage length of a user review.

REFERENCES

Anonymous. (2021) Sentiment analysis on
IMDB. Papers with Code. Available from:
https://paperswithcode.com/sota/senti-
ment-analysis-on-imdb (Date of access: 03/
Jan/2022).

Alammar, J. (2019). The Illustrated Word2vec.
GitHub. Available from: https://jalammar.
github.io/illustrated-word2vec/ (Date of ac-
cess: 03/Jan/2022).

Chrisman, N.R. (1998) Rethinking levels of
measurement for cartography. Cartography
and Geographic Information Systems 25:
231–242.

Cinemassacre Productions LLC. (n.d.) Cine-
massacre FAQ. Available from: https://cine-
massacreold.website-us-east-1.linodeobjects.
com/faq/ (Date of access: 06/Apr/2021).

Delany, S.J.; Buckley, M.; Greene, D. (2013)
SMS spam filtering: methods and data. Ex-
pert Systems with Applications 39: 9899–
9908.

Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova,
K. (2018) BERT: pre-training of Deep Bidirec-
tional Transformers for Language Under-
standing. arXiv. Available from: https://arx-
iv.org/abs/1810.04805 (Date of access: 03/
Jan/2022).

Eberhard, D.M.; Simons, G.F.; Fennig, C.D.
(2021) Ethnologue: Languages of the World.
SIL International, Dallas.

Gelbart, B. (2019) A history of review bombing.
Gamerant. Available from: https://gameran-
t.com/mass-effect-borderlands-3-modern-
warfare-review-bombs/ (Date of access: 06/
Apr/2021).

Hochreiter, S. & Schmidhuber, J. (1997) Long

3314 This is opinion. Unfortunately, without ground truth ratings provided by the Nerd himself we might never be
able to go beyond such qualitative statements.

The Angry Video Game Model

https://paperswithcode.com/sota/sentiment-analysis-on-imdb
https://paperswithcode.com/sota/sentiment-analysis-on-imdb
https://jalammar.github.io/illustrated-word2vec/
https://jalammar.github.io/illustrated-word2vec/
https://cinemassacreold.website-us-east-1.linodeobjects.com/faq/
https://cinemassacreold.website-us-east-1.linodeobjects.com/faq/
https://cinemassacreold.website-us-east-1.linodeobjects.com/faq/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://gamerant.com/mass-effect-borderlands-3-modern-warfare-review-bombs/
https://gamerant.com/mass-effect-borderlands-3-modern-warfare-review-bombs/
https://gamerant.com/mass-effect-borderlands-3-modern-warfare-review-bombs/

Soares, H.M.

short-term memory. Neural Computation 9:
1735–1780.

Kim, A. & Liao, S. (2019) Why fans aren’t happy
with Pokémon Sword and Shield developer
Game Freak. CNN. Available from: https://
edition.cnn.com/2019/11/16/tech/nin-
tendo-pokemon-sword-shield-trnd/index.
html (Date of access: 06/Apr/2021).

Kingma, D.P. & Ba, J. (2015) Adam: a method
for stochastic optimization. ICLR, San Diego.

Knapp, T.R. (1990) Treating ordinal scales as in-
terval scales: an attempt to resolve the contro-
versy. Nursing Research 39: 121–123.

Kocĳan, V.; Lukasiewicz, T.; Davis, E.; Marcs,
G.; Morgenstern, L. (2020) A review of Wino-
grad schema challenge datasets and ap-
proaches. arXiv. Available from: https://arx-
iv.org/abs/2004.13831 (Date of access: 03/
Jan/2022).

Lau, J.; Cohn, T.; Baldwin, T.; Hammond, A.
(2020) This AI poet mastered rhythm, rhyme,
and natural language to write like Shake-
speare. IEEE Spectrum. Available from: http-
s://spectrum.ieee.org/artifi cial-intelli-
gence/machine-learning/this-ai-poet-
mastered-rhythm-rhyme-and-natural-lan-
guage-to-write-like-shakespeare (Date of ac-
cess: 03/Jan/2022).

Levesque, H.J.; Davis, E.; Morgenstern, L.
(2012) The Winograd schema challenge. Thir-
teenth International Conference on Principles
of Knowledge Representation and Reasoning
2012: 552–561.

LotrProject. (n.d.) Word count and density.
LotrProject. Available from: http://lotrpro-
ject.com/statistics/books/wordscount (Date
of access: 06/Jun/2021).

Mosteller, F. & Tukey, J.W. (1977) Data analysis
and regression: a second course in statistics.
Addison-Wesley, Boston.

Nakatani, S. (2010). Language Detection Li-
brary for Java. SlideShare. Available from:
https://www.slideshare.net/shuyo/lan-
guage-detection-library-for-java (Date of ac-
cess: 03/Jan/2022).

NLP-progress. (2021) Sentiment analysis. NLP-
progress. Available from: http://nlp-
progress.com/english/sentiment_analysis.
html (Date of access: 03/Jan/2022).

OpenAI. (2019) Dota 2 with large scale deep re-
inforcement learning. arXiv. Available from:
https://arxiv.org/abs/1912.06680 (Date of
access: 03/Jan/2022).

Ribeiro, M.T.; Singh, S.; Guestrin, C. (2016)
“Why Should I Trust You?”: explaining the
predictions of any classifier. Proceedings of
the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data
Mining 2016: 1135–1144.

Stevens, S.S. (1946) On the theory of scales of
measurement. Science 103: 677–680.

Wikipedia. (2021). YouTube. Wikipedia. Avail-
able from: https://en.wikipedia.org/wiki/
YouTube (Date of access: 06/Apr/2021).

Wiktionary. (2020) Statistics. Wiktionary. Avail-
able from https://en.wiktionary.org/wiki/
Special:Statistics (Date of access: 06/Jun/
2020).

Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.;
Norouzi, M.; Macherey, W.; et al. (2016)
Google’s neural machine translation system:
bridging the gap between human and ma-
chine translation. arXiv. Available from: http-
s://arxiv.org/abs/1609.08144 (Date of ac-
cess: 03/Jan/2022).

ACKNOWLEDGEMENTS

I want to thank James Rolfe for creating the
web series that inspired this work, and for pro-
viding hours of quality entertainment while I
was growing up. I am still subscribed to his
channel, and I do not aim to change that any
time soon.

ABOUT THE AUTHOR

Henrique Soares is an engineer and machine
learning enthusiast who, fortunately, grew up
playing better games than the ones featured in
AVGN. When he is not working on unconven-
tional applications of machine learning, Hen-
rique spends way too much time watching
YouTube web series.

Journal of Geek Studies 11(1): 7-34 (2024).

https://edition.cnn.com/2019/11/16/tech/nintendo-pokemon-sword-shield-trnd/index.html
https://edition.cnn.com/2019/11/16/tech/nintendo-pokemon-sword-shield-trnd/index.html
https://edition.cnn.com/2019/11/16/tech/nintendo-pokemon-sword-shield-trnd/index.html
https://edition.cnn.com/2019/11/16/tech/nintendo-pokemon-sword-shield-trnd/index.html
https://arxiv.org/abs/2004.13831
https://arxiv.org/abs/2004.13831
https://spectrum.ieee.org/artificial-intelligence/machine-learning/this-ai-poet-mastered-rhythm-rhyme-and-natural-language-to-write-like-shakespeare
https://spectrum.ieee.org/artificial-intelligence/machine-learning/this-ai-poet-mastered-rhythm-rhyme-and-natural-language-to-write-like-shakespeare
https://spectrum.ieee.org/artificial-intelligence/machine-learning/this-ai-poet-mastered-rhythm-rhyme-and-natural-language-to-write-like-shakespeare
https://spectrum.ieee.org/artificial-intelligence/machine-learning/this-ai-poet-mastered-rhythm-rhyme-and-natural-language-to-write-like-shakespeare
https://spectrum.ieee.org/artificial-intelligence/machine-learning/this-ai-poet-mastered-rhythm-rhyme-and-natural-language-to-write-like-shakespeare
http://lotrproject.com/statistics/books/wordscount
http://lotrproject.com/statistics/books/wordscount
https://www.slideshare.net/shuyo/language-detection-library-for-java
https://www.slideshare.net/shuyo/language-detection-library-for-java
http://nlpprogress.com/english/sentiment_analysis.html
http://nlpprogress.com/english/sentiment_analysis.html
http://nlpprogress.com/english/sentiment_analysis.html
https://arxiv.org/abs/1912.06680
https://en.wikipedia.org/wiki/YouTube
https://en.wikipedia.org/wiki/YouTube
https://en.wiktionary.org/wiki/Special:Statistics
https://en.wiktionary.org/wiki/Special:Statistics
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144

