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Videogame reviews are an essential part 
of the videogame industry today. From re-
views by specialized gaming outlets such as 
IGN or Kotaku to individual reviews on 
platforms that sell the game themselves 
such as Steam, reviews are an important 
part of the gaming ecosystem. They allow 
players to identify which games are worth 
investing their hard-earned cash and their 
scarce leisure time.

Reviews have also been used as a way 
for customers to draw attention to an issue 
with the game. This practice, known as re-
view bombing, has increased in recent 
years. One of the earlier high-profile exam-
ples is the review bombing of Mass Effect 3
in 2012 due to its controversial ending, 
which led developer Bioware to later re-
lease an extended cut as a response (Gel-
bart, 2019). Other examples include the re-
view bombing of The Elder Scrolls V: Skyrim
following the announcement in 2015 of paid 
mods for the game, which ultimately led 
the game developer Bethesda to postpone 
this feature until 2017 (Gelbart, 2019), and 
the review bombing of Pokémon Sword/
Shield due to the games not including every 
Pokémon from previous generations, 
among other issues (Kim & Liao, 2019).

THE ANGRY VIDEO GAME NERD

Reviews can also be the source of a lot of 

fun. Numerous YouTube channels special-
ized themselves in making game reviews in 
an entertaining way, providing (some-
times) insightful commentary on the qual-
ity of games.

One of these shows is The Angry Video 
Game Nerd, a YouTube  review comedy web 
series created by James Rolfe. To be clear, 
despite having increased in popularity on 
YouTube, the show predates it by more 
than a year. It was first released on Cine-
massacre website on May 25, 2004 (Cine-
massacre Productions LLC, n.d.). Its 
YouTube debut only happened on Decem-
ber 15, 2005 (Wikipedia, 2021).

In the show James Rolfe plays the per-
sona of “The Nerd”, an angry, short tem-
pered and foul-mouthed character who re-
views bad games (usually from the 16 or 32-
bit console era) in an attempt to warn the 
viewer not to play them. The show is con-
sidered one of the pioneers of review videos 
on the internet, inspiring, for better or 
worse, many other content creators.

It is very common for reviews to include 
some kind of numerical or ordinal scale that 
allows customers to compare reviews or to 
aggregate reviews from different users into 
a single score. However, despite being re-
views, Angry Video Game Nerd (hence-
forth AVGN) videos do not feature any nu-
merical ratings that allow us to do that. In 
this article I aim to investigate whether ma-
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chine learning and sentiment classification 
techniques can help us overcome this limi-
tation of the show’s format.

Note on profanity: Being inspired by 
Rolfe’s show to write this article, I will use 
many of his quotes to illustrate the tech-
niques being applied here. While I used the 
actual verbatim text when running the 
models and predictions (as the removal of 
an expletive may change the meaning in-
tended for the sentence), the quotes in print 
will not feature any of the Nerd’s trade-
mark profanity. That was done to keep this 
text accessible to all viewers, so I will in-
stead use less offensive substitutes or *** in 
place of the expletives. These editorial 
changes will be marked by a gray highlight 
over the word.

OBJECTIVES

This paper aims to establish a perfor-
mance baseline for machine learning meth-
ods in predicting video game review scores, 
offering an introduction to the topic for 
those new to the field. While the methods 
described here are definitely outdated com-
pared to recent advances brought by Large 
Language Models such as GPT-4 or Google 
Gemini, they still can be useful – both as 
simple and low-cost solutions for less com-
plex language tasks and as educational 
tools. I believe the approach used in this ar-
ticle strikes a good balance between achiev-
ing a good performance and being easy to 
understand and follow along – this is a sci-
ence communication journal, after all. (This 
still requires some basic understanding of 
linear algebra to follow along.) To facilitate 
this goal, all code used in this paper has 
been made available on Github (https://
github.com/hemagso/avgm).

Overview of this article

This article is structured in the following 
manner:

• First, I will present some common 
challenges and pitfalls encountered 

when dealing with natural language. 

• Next, I will describe the data used in 
this article and detail all pre-processing 
done to it.

• I then discuss model architectures 
used in this article and present their per-
formance and shortcomings.

• Finally, I present my conclusions on 
which model architecture works best for 
this dataset and suggest new lines of re-
search based on this work.

CHALLENGES FOR NLP

Before describing the work done here, I 
want to briefly discuss some of the chal-
lenges of working with Natural Languages 
from a machine learning perspective. This 
list is by no means exhaustive, but it should 
be enough to situate the reader on the chal-
lenges that must be overcome to obtain 
good performance for our machine learning 
models.

Contextual words

Most languages have words whose 
meaning changes depending on where they 
are in the text and what other words accom-
pany them. For example, consider the fol-
lowing sentence:

“I ran to the game store because we 
ran out of bad games to play.”

The highlighted word, “ran”, has two 
different meanings in this sentence. On the 
first occurrence it means to quickly move 
yourself to another location, while in the 
second occurrence it is part of the “ran out” 
expression, which indicates that our supply 
of something was exhausted (in this case, 
bad games). Another example, more relat-
able for our sentiment analysis application, 
can be seen on the following sentence:

“You know what? This game is not 
bad.”

In this example the only way to accu-
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rately assess the sentiment of the reviewers 
towards the game is to take “not bad” as a 
unit of meaning (probably indicating that 
the game is mediocre at best).

Machine learning models that analyze 
the text word by word would be unable to 
understand the intended meaning in these 
two examples. Methods that can account for 
the position of words in a sentence and their 
relation to each other are necessary when 
dealing with this kind of data.

World knowledge dependence

“The trophy doesn’t fit in the brown 
suitcase because it’s too big.”

What is too big? The trophy or the brief-
case? This might be a simple question for a 
human but consider how much knowledge 
not expressed in the sentence or on the 
meaning of the words themselves a person 
needs to answer this question. First, you 
need to know that briefcases can contain 
other things, while trophies cannot. Sec-
ondly, you need to know that an object can 
only be contained by a larger object. 

This sentence is an example of a Wino-
grad schema, an alternative to the Turing 
test proposed by Hector J. Levesque as a 
means to test for machine intelligence 
(Levesque et al., 2012). The sentences in a 
Winograd schema are obvious for a human 
reader, but exceedingly difficult to ma-
chines due to the large amount of world 
knowledge or indirect reasoning necessary 
to solve their ambiguity. (Humans usually 
will not even notice that there is any ambi-
guity at all!)

Although some recent methods have 
achieved accuracy rates of over 90% by ex-
ploiting extremely complicated deep neural 
networks and pre-trained transformer 
models (Kocĳan et al., 2020), the Winograd 
schema stands as a good example of the 
subtle challenges in natural language pro-
cessing.

Ambiguity

Consider the following sentence:

“I went into the forest, where I found 
a bat.”

What did I find in the forest? Was it a 
small flying mammal, or a long piece of 
wood? Both answers are possible for this 
sentence, and without further context no 
correct answer can be given. Differently 
from Winograd schemas there is no prior 
world knowledge that can 100% disam-
biguate the meaning of this sentence. Hu-
mans might disambiguate it based on their 
prior beliefs on how likely each encounter 
is,1 and machines can take a similar ap-
proach.

Language detection

Humans around the world speak lots of 
different languages. It is hard to pin down 
an exact number, as languages are con-
stantly evolving and the distinction be-
tween a language and a regional dialect can 
be hard to define. As of the writing, there 
are 7,139 languages recognized by the Eth-
nologue, a reference publication on the 
topic (Eberhard et al., 2021).

Although NLP models can be trained on 
datasets consisting of multiple different 
languages (and some applications such as 
Machine Translation in fact require such 
datasets), it is often useful to split your 
problem into individual languages and 
then train specialist models for each. This 
way, your model does not need to learn 
how to deal with things like false friends – 
words that are written or sound similar in 
two different languages but mean com-
pletely different things. For example, “par-
ente” in Portuguese is a false friend for 
“parent” in English: the former refers to any 
person belonging to your family, while the 
latter is more specific, referring only to your 
mother and father.

 This, however, introduces another prob-
lem: how can we automatically detect the 
language of a text? I will discuss this prob-
lem in more detail below, but for now, let us 
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explore a few more challenges for NLP 
models.

Spelling errors

People make mistakes, and written lan-
guage is not an exception. While humans 
are rather good at correcting these mistakes 
(by noticing typos, erroneous pronuncia-
tion or context), machines are terrible at 
that. One of the first steps in almost all NLP 
models is tokenization, in which the text is 
split into small pieces that are mapped to a 
predefined set of tokens, and a misspelled 
word would not map to any of these, caus-
ing what is usually called an “Out-of-vo-
cabulary” token – a token that the model 
never met before. The effect of these can be 
severe on predictions. Consider the follow-
ing example:

“This game is awful.”

This review might be tokenized into the 
following tokens, all of which are known by 
the model, having been assigned a senti-
ment score during training.

In this hypothetical example, the pres-
ence of the word “awful” allows our simple 
“Bag-of-words” model to estimate a nega-
tive sentiment for this review. But consider 
what would happen in the next misspelled 
example:

“This game is aful.”

The model has never met the word 
“aful”, so it does not know what to make of 
it. It might assign it an average score, 
wrongly classifying the sentence as a neu-
tral sentiment.

This problem can be partly alleviated by 
increasing the size of your token set to ac-
commodate common misspellings of 
words. However, it is impossible to account 

for all occurrences, and there is a trade-off 
between model training time and perfor-
mance and vocabulary size. A lot of re-
search has gone into developing tokeniza-
tion methods that can deal with this kind of 
issue, and some of them will be explored 
further below.

Domain-specific vocabulary

Domain specific vocabulary happens 
when a specific word has a different mean-
ing within a specific domain when com-
pared to its everyday usage. These are quite 
common in science, requiring a reader to 
consider the topic of a text when deciding 
on the meaning of a word. For example, 
when dealing with set theory an “element” 
refers to an individual member of a set. If on 
the other hand we are discussing chemistry, 
an “element” refers to a chemical element, a 
substance consisting of atoms that have the 
same number of protons in their nucleus. 
When talking about a game, an “element” 
might refer to elemental spells, such as 
“Fire”, “Air”, or “Lightning”, a feature 
common to many magic systems in games.

This problem is more severe when you 
are trying to build a generalist language 
model, as the model will need large vol-
umes of data to learn how to differentiate 
between meanings. Since we are dealing 
with a narrow application in this article 
(sentiment classification for game reviews), 
we will not discuss this problem in depth.

High dimensionality and sparsity

Finally, we discuss a problem that is not 
exclusive to NLP, but rather it is something 
that needs to be considered for most ma-
chine learning problems. The curse of di-
mensionality refers to phenomena that arise 
from dealing with high-dimensional spa-
ces. In machine learning it is usually related 
to the fact that with an increase in dimen-
sionality of your dataset there is an expo-
nential increase in the amount of data re-
quired to cover all the space.

Let us work with a hypothetical example 
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to illustrate this problem. Imagine a classi-
fication model that takes as input 3 nominal 
variables,  each with 10 categories. In this 
example, we would need at least 1,000 dif-
ferent training examples to cover the whole 
space. Now consider what would happen if 
instead we had 10 nominal variables with 
10 categories each. 

This curse of dimensionality affects text 
classification in a very particular way. One 
approach when modelling text data is to 
create dummy variables for each possible 
word:

The English language, however, has a lot 
of words.2 If we consider a small vocabu-
lary set of just 1,000 words, the number of 
combinations needed to cover this space is 
greater than 10301.

Language space is also sparse, having 
most of the dummies described above as-
signed a value of zero. This happens be-
cause most texts use only a small subset of 
the vocabulary of the English language. 
Even The Lord of the Rings, a masterpiece of 
481,103 words famous for its elaborate de-
scriptions and flowery language uses only 
15,493 distinct words (LotrProject, n.d.).

This high dimensionality and sparsity 
provide several challenges for training ma-
chine learning models. We will discuss 
“Word Embeddings”, a common method 
for dealing with this problem further in this 
article.

DATA & PREPROCESSING

Data description

For this study I collected data from the 
review aggregator website Metacritic 
(www.metacritic.com). The data are com-
prised of 644,268 user reviews for 15,931 
different videogames.3  Each review is also 
associated with an ID that uniquely identify 

the user who made the review, as well as 
the publication date of that review on the 
website. Table 1 describes the fields avail-
able on the dataset.

Unfortunately, I cannot make the dataset 
available for further research as the con-
tents of the review themselves are copy-
righted by CBS Interactive, who owns 
Metacritic, as stated in their Terms of Use 
(https://cbsinteractive.com/legal/cbsi/
terms-of-use/).

Data preprocessing pipeline

Language detection

Metacritic is a website with global pres-
ence and users from a multitude of nation-
alities can post reviews there. Although 
most reviews are written in English, there 
are other languages represented on the 
dataset, and the website provides no struc-
tured data on what that language is. I uti-
lized the langdetect python package 
(Nakatani, 2010) to identify the languages 
of the reviews, yielding a total of 46 differ-
ent languages. The distribution of reviews 
among the top-10 most common languages 
on the dataset is shown in Table 2.

As expected, most of reviews are written 
in English. As I do not have enough data to 
train our model in multiple languages, I 
opted to work only with English reviews 
from this point forward.
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2 There are currently over 550 thousand entries on Wiktionary for English (Wiktionary, 2020), and native speakers 
usually have a vocabulary of around 10,000 words.
3 This count considers games available in different platforms as entirely different games. For example, Skyrim on 
PC, PS4, Xbox, and Amazon Alexa counts as four different games.

Table 1. Dataset description.
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Train / validation / test split

When training machine learning models, 
it is important to have a method to estimate 
your model performance in unseen data, 
that is, data that was not used to train the 
model. This avoids overfitting, a common 
problem when training large models in 
which the model ends up “learning the 
training data by heart” and performing 
poorly in unseen data.

Various methods exist to estimate the 
performance of the model on unseen data, 
but the simpler method is to simply holdout 
a fraction of your data, not using it to train 
your model parameters. This method, aptly 
called the holdout method, has the down-
side of reducing the amount of data avail-
able for the model to learn from. However, 
since I have enough data for my purpose, I 
decided to use it. I split the data into three 
different sets:

• Train set: data used to train the 
model weights through back-propaga-
tion;

• Validation set: data used to choose 
which model architecture is the best for 
this problem and to calibrate models hy-
perparameters;

• Test set: data used solely to estimate 
the performance of the final model on 
unseen data.

I reserved 10% of the dataset as the Vali-
dation set and 10% more as the Test set, 
leaving 80% of the data for model training. 

Table 3 shows the number of records in 
each set.

Tokenization

The last step on our pre-processing pipe-
line is tokenization. As mentioned above, 
tokenization is the process through which 
we segment a text into a sequence of mean-
ingful tokens. These tokens (after being 
converted into numerical id’s that can be 
manipulated with math) are then fed into 
our machine learning models for training 
and predictions.

The choice of tokenization method can 
have a huge effect on how easy a model is 
to train, as it effectively sets the minimum 
level of detail from which a model can de-
rive meaning. Hence, it is usually a trade-
off between having a token that is large 
enough to convey sufficient information by 
itself and the overall number of distinct to-
kens in your dataset (also known as your 
vocabulary size). To illustrate this trade-off, 
consider the following choices for tokeniza-
tion:

• Letter tokenization: each different 
letter and digit is a separate token;

• Word tokenization: each group of 
characters separated by whitespace or 
punctuation marks are a separate token;

• Sentence tokenization: each differ-
ent sentence is a different token.

Let us use a quote from AVGN episode 
“Hong Kong 97” to illustrate the differences 
between these three methods: “I've been 
called upon to take care of business once again. 
Apparently, there is a game worse than Big 
Rigs. WORSE than Dr. Jekyll and Mr. Hyde. 
WORSE than CrazyBus or Desert Bus. It is 
known as Hong Kong 97, and I've been getting 
requests for it up the butt.”

Journal of Geek Studies 11(1): 7-34 (2024).
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Table 4 shows the length of the se-
quences produced by each tokenization 
method, and the number of distinct tokens 
produced. Notice how the number of to-
kens needed to represent the text decreases 
with token complexity. This means that 
each token conveys more information.

On the other hand, the uniqueness of 
each token also increases with token com-
plexity. Letters will be repeated quite often, 
as well as most words.4 On the other hand, 
it is rare for full sentences to be repeated 
(and those which are probably phatic con-
structions or other types of uninformative 
sentences). This is a problem for us since we 
need many examples of a token to allow our 
model to learn how it should deal with it.

A lot of different methods of tokeniza-
tion have been tested for natural language 
processing, and today most models use a 
sub-word unit approach. That method is 
somewhere between our letter tokenization 
and word tokenization. Sub-word methods 
have several useful properties that help us 
to better deal with misspellings and rare 
words, as we will see on the next section.

Sub-word units

Let us explain why we would want to 
use tokens smaller than a word with an ex-
ample. Consider the following excerpt from 
AVGN episode “Plumbers don’t wear ties”: 
“Oh, so is he a plumber? Well, the game’s 
called Plumbers Don’t Wear Ties, so I guess it 
makes sense: he’s a plumber, and I don’t see him 
wearing a tie… [Images of John wearing a 
tie] ...WHAT THE HECK?! You can’t even 
trust the darn title!”

Take note of the two highlighted words, 
“plumber” and “plumbers”. One tokeniza-
tion option if to consider both as separate 

tokens. However, the model would see 
them as completely unrelated, and would 
need a lot of data to learn the relationship 
between them.

Another option is to create two separate 
tokens: “plumber” and “#s”. The first token 
is just the word plumber by itself, and the 
second token is just the letter s (The # sym-
bol indicates that this token is appended to 
another token to form a word). Table 5 com-
pares the tokenization of these words.

In the sub-word representation both 
words share a token. In this way, the model 
does not need to learn that both words are 
related. It only needs to learn that the token 
“#s” usually means that the previous token 
is plural. And there are much more exam-
ples of plurals for the model to learn this 
than examples of the words “Plumber” and 
“Plumbers”.5 This is even more useful for 
rarer words. Consider the word “supernat-
urally”, for example. There are many more 
examples of the word “supernatural” than 
“supernaturally”, as can be seen in Figure 1, 
extracted from Google N-Gram viewer. It is 
easier for the model to learn the meaning of 
“supernatural” and then learn the meaning 
of “#ly” as the adverbial form from all other 
adverbs on the dataset than trying to learn 
the meaning of “supernaturally” by itself.

13

Table 4. Statistics for different tokenization methods.

4 Unless we are dealing with rare words such as “gobbledygook” or “winklepicker”. Yes, those are real words.
5 Despite the existence of a very prolific game series with a plumber character.

Table 5. Word vs. sub-word tokenization examples.

Figure 1. Occurrence over time for “supernatural” 
and “supernaturally”.
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For this work I opted to use the Word 
Piece tokenizer model. First proposed by 
(Wu et al., 2016) to address the problem of 
segmenting Korean and Japanese text,6 this 
method was then adopted to automatically 
segment text into sub-word units. Its main 
advantage is being unsupervised, allowing 
us to learn the best token representation di-
rectly from the corpus and without the use 
of any annotated data. I trained the tok-
enizer on our train corpus to produce a vo-
cabulary of 30,000 tokens, using the imple-
mentation available in the tokenizers python 
library (huggingface, 2021) with the follow-
ing parameters:

• Normalization: I used the same nor-
malizer as the one used by the BERT 
language model (Devlin et al., 2018). 
This normalizer replaces all types of 
whitespace characters by the common 
whitespace, replaces accented charac-
ters by their unaccented version, and 
applies lowercasing to all characters;

• Pre-tokenizer: I used the same pre-
tokenizer as BERT, splitting on white-
space characters and punctuations to 
produce the first tokenization.

The details on the tokenization process 
are beyond the scope of this text. If you are 
interested in learning more, please check 
the accompanying jupyter notebooks avail-
able on Github (https://github.com/
hemagso/avgm) where I go in more details 
about the process. To test the tokenization, 
let us check how it tokenized the following 
phrase:

“Feast your eyes on this accursed non-
sense.”

[‘feast’, ‘your’, ‘eyes’, ‘on’, ‘this’, 
‘accur’, ‘#sed’, ‘nonsense’, ‘.’]

Everything seems to be working fine. 
Most common words consist of a single to-
ken, but the word “accursed” was split in 
sub-word units. With this step out of the 

way we can now proceed to discuss my 
modelling methodology.

The final step is converting the sequence 
of tokens into a sequence of numerical IDs, 
as models need things to be converted into 
numbers for them to be able to operate on 
them. For tokenizers, each unique word in 
the vocabulary is assigned during training 
a unique ID. In the case of the example 
above, it is:

[16746, 1456, 4308, 1360, 1358, 4305, 
5417, 6438, 15]

METHODOLOGY

Approaches to text classification

How can computers understand human 
languages? After all, computers are engi-
neered to deal with numbers, and their lan-
guage if one of numbers and symbols, rigid. 
Can computers understand the nuances of 
human language, with all its intricacies and 
beauty? Can a machine write a poem? 
Maybe.7 But first we will need to help it turn 
language into math. In this section I will 
discuss different approaches that can be 
used to train text classifiers from labelled 
tokenized text.

Bag-of-words models

Let us go back to the sentence we tok-
enized above:

[16746, 1456, 4308, 1360, 1358, 4305, 
5417, 6438, 15]

The actual IDs here have absolutely no 
meaning and are completely arbitrary. The 
first step when modelling is deriving a use-
ful representation of our data. One of the 
simplest options is calculating the count on 
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6 Tokenization is a challenge in these languages because, in contrast to most languages based on the Latin script, 
Korean and Japanese words are not whitespace-separated. For example, can you spot the boundaries between 
words in the following text? 日本語を勉強しましたが本当に大変でした
7 Surprisingly, yes (Lau et al., 2020), although others will have to judge its quality.
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the text for a specific word and using this 
count as features for a classifier. This ap-
proach is called bag-of-words, and it is sur-
prisingly effective for some application. 
Bag-of-word Naïve Bayes classifiers were 
one of the first effective spam filtering ap-
plications (Delany et al., 2013). This type of 
classifier works on the assumption that the 
mere presence of a word is informative 
about the dependent variable. In our review 
prediction problem, for instance, we could 
select words that are known to have a nega-
tive or positive sentiment to be part of our 
bag-of-words and use this to predict the 
sentiment for reviews:

• Positive words: good, great, excel-
lent, masterpiece, incredible, mar-
velous;

• Negative words: bad, awful, terri-
ble, trash, stupid.

This approach, however, has some flaws. 
It cannot take the context of the words into 
account, as all information about where the 
word is in the sentence is lost. For example, 
if we use the bag-of-words listed above we 
would not be able to properly classify the 
phrase “This game is not bad.” This is partic-
ularly important in cases where the word 
might not be informative by itself but is a 
powerful predictor when in context. In the 
sentences “This game is very bad” or “This 
game is slightly bad” the highlighted words 
are only informative in the presence of the 
word “bad”. This weakness can be miti-
gated by building not a bag-of-words but a 
bag-of-n-grams. For example, we could cal-
culate the counts of the 2-grams (“very”, 
“bad”) and (“slightly”, “bad”) and use 
those counts as features for our model. 
However, this starts to introduce a whole 
bunch of new challenges. How do I select 
the words in my bag of words? How can I 
find n-grams that are informative and 
should be included? The bag-of-words is a 
simple and surprisingly effective approach 
and you should definitely start with it be-
fore trying more complicated approaches – 
an advice that I will completely ignore in 
this article as I go forward to talk about Se-
quence Models.

Sequence models

So, how can I make use of the informa-
tion provided by the order of the tokens in 
our sentence? Well, a good place to start is 
by not throwing it away at all. Sequence 
models consume the raw sequence of to-
kens as its input, allowing us to build archi-
tectures that can make use of the order in-
formation on the sentence.

However, this introduces a new prob-
lem. Models need not only be finite, but also 
of a fixed size. As we need to train the pa-
rameters in advance, the number of param-
eters and how they are related to each other 
need to be determined ahead of time. Text, 
however, can be of arbitrary length, and our 
model need to be able to deal with reviews 
such as “It is good” as well as “This is an 
amazing piece of gaming history. The developers 
were probably inspired by God’s angels when 
they were writing each single line of code of this 
masterpiece.”

In this article we make use of recurrent 
architectures to solve this problem. Recur-
rent neural networks work by having an in-
ternal state of fixed size. An also fixed func-
tion is used to update this hidden state 
based on the current element of the input 
and the previous value. After applying this 
function on all elements of the sequence we 
are left with a fixed size state vector that can 
then be fed into a classifier to produce pre-
dictions. To illustrate how this type of 
model can work let us use a very simple 
mock example with a recurrent model com-
posed by the following components:

• A 2-dimensional hidden state

• An input stream where:

• An update function 

 where
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Before we go through an example, try to 
figure out what this recurrent rule does. 
What does h0 represents? How about h1? Let 
us run through some examples.

Example 1: “This game is good”

Example 2: “This game is bad”

Example 3: “This game is not good”

Example 4: “This game is not bad”

Notice that both negative sentiment ex-
amples got a negative h¹ by the end, and 
both positive sentiment examples got a pos-
itive one, despite examples 3 and 4 express-
ing those sentiments using a negation 
clause. The model was able to do that be-
cause it used h0 as a memory of whether or 
not the previous word in the sequence was 
a negation word, allowing it to properly as-
sess the sentiment of the words good or bad 
in context.

Of course, this is a toy example that only 
serves to illustrate the mechanism through 

which recurrent models can understand 
context. In practice, it is almost impossible 
to interpret the update function and the 
meaning of each element of the state vector 
in the way we did here. However, we can 
learn this function and representations 
from the data! This is the basic principle be-
hind Recurrent Neural Networks, the 
method of choice for this article.

Word embeddings

Until now we have been using the index 
for the word as a categorical feature for our 
model, representing them by their indices. 
In practice, categorical features are usually 
represented by an encoding scheme known 
as one-hot encoding, where an indicator 
variable indicates the presence of a cate-
gory:

This can work fine for small vocabulary 
of tokens, but as the vocabulary increases, 
we quickly start facing the problems of 
high-dimensionality and sparsity men-
tioned above. For our 30,000 words vocabu-
lary, each element of our sequence (that is, 
every sub-word unit for our samples) 
would need to be represented by a 30,000-
long vector of a single “one” and 29,999 “ze-
ros”.

One way of dealing with this problem is 
by using word embeddings. Word embed-
dings reduce the size of the representation 
of each word by replacing the long and 
sparse Boolean (only zeros and ones) vec-
tors by smaller and dense (containing any 
real number). The nice thing about embed-
dings is that not only they can be trained 
from your data, but they can also be learned 
from unlabeled data. Below we illustrate an 
example for an embedding of size 4:
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Embedding has many interesting prop-
erties, and there is a lot of research on meth-
ods to build embeddings. For a detailed ex-
planation of embeddings, I recommend the 
work of Alammar (2019).

I will start with a simple sequence 
model. This will establish a baseline perfor-
mance level for this task and justify some 
design choices that we will make going for-
ward. It is also good practice when dealing 
with a new application: we start with the 
simplest model and build it up to address 
weak points identified along the way.

Model design

Our first model will be a Vanilla Recur-
rent Neural Network. The model has the ar-
chitecture shown in Figure 2. Do not worry 
right now about what exactly a Recurrent 
Layer is; we will get into more detail about 
it later on.

Figure 2 describes the parameters of each 
layer, such as Embeddings Sizes and Hid-
den Sizes. I also noted the output tensor size 
(which is useful to wrap your head around 
on how each layer transforms its input) and 
the number of weights on each layer (which 
will be particularly useful when we are 
comparing different model architectures).

Model training

I trained this model on the train dataset 
described above. The training ran for 20 
epochs, and at the end of each epoch perfor-

mance metrics were collected both for the 
training set and the validation set. The 
model was trained using Negative Log 
Likelihood Loss, with the Adam optimizer 
(Kingma & Ba, 2015) with default parame-
ters (Learning rate = 0.001; β1=0.9; β2=0.999) 
used for gradient descent.

Model evaluation

To evaluate the model, I used the follow-
ing model level metrics:

• Loss: the Negative Log Likelihood 
value;

• Exact Accuracy (ACC): the percent-
age of ratings that were perfectly pre-
dicted by the model;

• Accuracy ± 1 (ACC1): the percent-
age of ratings that were wrong by at 
most 1 rating;

• Mean Absolute Error (MAE): the av-
erage distance between the true rating 
and the predicted rating.

I also evaluated the following class level 
metrics to assess the quality of the predic-
tion:

• Recall: the percentage of records 
with a certain rating that were predicted 
with said rating;

• Precision: the percentage of records 
predicted with a certain rating that were 
indeed of that rating.

All metrics were calculated for both train 
and validation datasets.

Model level metrics

Let us start by looking at the model level 
metrics, and how they varied during train-
ing (Fig. 3). We can see that on average all 
metrics improved with training (Fig. 3), al-
though there is a lot of variation on both the 
training and validation set. This could be an 
indication that our model is having trouble 
learning and that we might need a larger or 
more sophisticated model.
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Figure 2. Simple model architecture.
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Using loss as our selection criteria, we 
see that the model achieved the best gener-
alization (performance on unseen data) on 
Epoch 13:

So, how good is this model? Since this is 
the first application on this dataset, we do 
not have any established benchmarks. In 
this case, it is useful to look at the perfor-
mances achieved by other models on simi-
lar datasets.

State-of-the-art (SOTA) performance on 
the IMDB dataset (a dataset with movie re-
views and associated sentiment) showed 
96.21% accuracy (NLP-progress, 2021). So, 
our model is awful, right? Wow, not so fast! 
The IMDB dataset collapses the rating mea-
surement scale, classifying all ratings 6 and 
below as negative, and all ratings 7 and 
above as positive. That reduces the task to a 
binary classification! So, our accuracy met-
rics are not comparable with the IMDB 
dataset.

The most comparable benchmark I could 
find was the Yelp dataset (a dataset with re-
views extracted from www.yelp.com), 
which has a 5-level measurement scale for 
ratings. SOTA for this application achieves 
72.8% accuracy. This indicates that, yes, my 
model is probably bad and that we should 
probably use a better architecture. (This 
was already indicated by the volatile loss 
training curve, but it is always nice to have 
further evidence.) Before trying to build a 
new model, however, let us explore a bit 
more this first attempt – we might learn 
some other useful things to incorporate into 
new attempts.  

Class level metrics

Let us now look on class level metrics. 
These metrics will allow us to know if our 
model has a good performance predicting 
all ratings, or if for some reason it predicts 
some ratings better than others.

Figure 4 shows both Recall and Precision 
metrics for each of our classes, and we can 
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immediately notice something funky is go-
ing on. The model seems to perform way 
better when predicting ratings 0 or 10. Re-
call for both these ratings is high, indicating 
that we correctly “retrieve” 80% of these 
ratings. However, Precision is way lower, 
indicating that this outstanding recall may 
in fact be caused by the model favoring 
these two ratings instead of the other 9 pos-
sibilities. Why would that be?

A quick look on the distribution of our 
data reveals the issue. Figure 5 shows the 
distribution of ratings in our dataset along 
the distribution of our model’s predictions. 
The thing is: review ratings usually have an 
unbalanced distribution. In our case, over 
half the reviews is either 10 (“This is the best 
game ever.”) or 0 (“I hate this game with the 

power of a thousand suns.”). Consequently, 
our optimization process ends up prioritiz-
ing getting those two ratings in detriment of 
the others, polarizing our reviews even 
more. 

Situations like this are an example on 
why we should not only analyze model 
level metrics but also use class level metrics 
in the analysis. I will discuss which design 
decisions we can make to avoid this issue in 
later sections.

Individual predictions

It is also always useful to look at individ-
ual predictions made by our model. You 
might get qualitative insights that you 
would not notice from the aggregated data. 
To that end, I picked three sentences from 
three different AVGN episodes.

Dr. Jekyll and Mr. Hyde: “You'd think 
I'm jokin', like I'm trying to be funny or some-
thin'. But, no, the fact that that game exists is a 
horrible abomination of mankind. That game is 
so freaking horrible, and I am not kidding” 
(AVGN, 2010).

Here we can see that the model captured 
the overall sentiment of the sentence, with 
the largest probability being assigned to rat-
ing 0, with a longer tail towards intermedi-
ate ratings.

Earthbound: “I am blown away. That was 
one of the craziest games I've ever played. Sure, 
it has flaws but I think it does belong on the list 
of mandatory Super Nintendo games” (AVGN, 
2018).
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Figure 4. Precision and recall metrics for the simple 
model.

Figure 5. Actual and predicted class distribution for 
the simple model.

Figure 6. Cover art (source: Wikipedia) and predicted 
scores for the game Dr. Jekyll and Mr. Hyde.
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Here we can see that the model is very 
sure of the positive sentiment of the review, 
assigning most of the probability to a 10 rat-
ing.

Castlevania 64: “The graphics are good, for 
Nintendo 64 standards, but I find them unap-
pealing, because it's the beginning of the 3D 
age, and they haven't perfected it yet. It's that 
awkward period between the old and the new” 
(AVGN, 2009).

This is a mixed review, and it shows one 
of the flaws that the model has right now. 
Note how there are peaks on both rating 10 
and rating 0, with a valley in between. Isn’t 
this weird? How can the model assign a 
high probability for both 10 and 0, and not 
to anything in between?

This happens because the model has no 
idea that there is an order associated to the 
ratings. It has no idea that if the probability 
for a rating 10 is high, the probability for a 
rating 0 should be low. It treats the ratings 

as an unordered categorical scale, also 
known as a nominal scale. Below, I discuss 
how we can make the model aware of the 
order of the scale, and what trade-offs that 
entails.

Model design choices

As we saw in the previous section there 
are several issues with the current model: 
poor performance overall vs. SOTA bench-
marks; poor Recall and Precision on inter-
mediate ratings; unawareness of the ordinal 
nature of the ratings.

All these issues stem from design deci-
sions we made when building our model. 
In this section, I will present which deci-
sions those are and discuss options to im-
prove the model.

Journal of Geek Studies 11(1): 7-34 (2024).

Figure 8. Cover art (source: Wikipedia) and predicted game scores for the game Castlevania 64.

Figure 7. Cover art (source: Wikipedia) and predicted game scores for the game Earthbound.



Target variable measurement scale

Not all measurements are created equal. 
Consider the following measurements asso-
ciated to myself:

• my country of residence is Brazil;

• I am the eldest son in my family;

• I live near latitude -23.6 and longi-
tude -46.7. 

• as of the writing of this article, I am 
32 years old.

There are different things that I can do 
with each of those measurements. I can 
compare my country of residence to an-
other person, but I cannot calculate what 
“twice my country of residence” would be. 
You can know that my age is greater than 
my brothers’, but without any extra infor-
mation you cannot know by how much. 
These are examples that show that there are 
different types of measurements, and it is 
useful to be aware of that when building 
machine learning models.

There has been some work in statistics 
and measurement theory to create defini-
tions for the different types of measure-
ment. For instance, Stevens (1946) proposed 
a four-level measurement scale (Nominal, 
Ordinal, Interval, and Ratio). Other re-
searchers, such as Mosteller & Tukey (1977) 
and Chrisman (1998), proposed more so-
phisticated classifications, with 7 and 10 dif-
ferent levels, respectively. I found in prac-
tice however that Stevens’ taxonomy works 
well to discuss machine learning. But what 
exactly is each kind of measurement?

• Nominal: nominal measurement 
scales differentiate between values 
based on their identity. Other than that, 
no other comparisons can be done on 
measurement scales. For example, you 
cannot rank order them or calculate the 
difference between them. In the exam-
ples above “Country of residence” is a 
nominal scale variable. You can say that 
Brazil is different from the United States 
of America, but you cannot rank order 
them8 or calculate the difference be-
tween Brazil and USA.9 Other examples 
of nominal scales are Gender, Lan-
guage, and Favorite Book.

• Ordinal: Ordinal measurement 
scales are like nominal scales, but they 
have an intrinsic order associated to 
them. You still cannot calculate the dif-
ference between them, but you can de-
termine if one is greater than another, 
allowing one to rank order them. In the 
examples above “eldest” is an ordinal 
measurement scale. You know that by 
being the eldest my age is greater than 
my middle and youngest brothers’, but 
you cannot know by how much. Other 
examples of ordinal scales are Likert 
scales that are commonly used in sur-
veys to measure agreement level, and 
star ratings on Amazon.com reviews.

• Interval: Interval measurements are 
something that most of us might call a 
numerical measurement. We can not 
only compare and rank them, but also 
calculate the difference between two 
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Figure 9. The XKCD model design approach (source: 
https://xkcd.com/1838/).

8 You can rank order them on other associated measurements, such as GDP, population, or HDI, but in those cases 
the measurements being ranked are those indices, not the countries themselves.
9 Although you could argue that this difference is at least a couple of caipirinhas.
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values. However, interval scales have 
an arbitrary zero value and, as such, 
their ratios are not meaningful. My loca-
tion in latitude and longitude is an ex-
ample of an interval scale. You can say 
that the difference between my latitude 
and someone located in Cambridge, 
MA, is 66 degrees. But it makes no sense 
to say that the ratio between my latitude 
and the latitude of someone in Cam-
bridge, MA, is -0.56. Other examples of 
interval scales include temperatures on 
both Fahrenheit and Celsius scales.10

• Ratio: Ratio measurements are like 
interval measurements, but their scale 
has a well-defined and usually non-arbi-
trary zero scale so that calculating ratios 
make sense. In the examples above, my 
age is a ratio scale. It makes sense to say 
that I am twice as old as my brother. 
Other examples of ratio measurements 
include income and temperatures mea-
sured on the Kelvin scale.

Now that we know the four types of 
measurement scales, which one do you 
think best applies to videogame ratings in 
our dataset? We can say that one rating is 
greater than another, so nominal is out of 
the picture. But is the difference between 
two ratings meaningful? And more than 
that, is it consistent across the scale? Con-
sider the following two completely unre-
lated and hypothetical cases:

• after much deliberation, you de-
cided to increase your rating for this ar-
ticle from 2/10 to 3/10;

• after much deliberation, you de-
cided to increase your rating for this ar-
ticle from 9/10 to 10/10.

Do you feel that the increase in rating in 
both cases is the same? Most people would 
argue no. The first increase changed the ar-
ticle from a bad article to a slightly “less 
bad” article. The second case, on the other 
hand, elevated it from a very good article to 
perfection! (Thank you, by the way.) How-
ever, people calculate metrics such as aver-

age scores all the time and, strictly speak-
ing, you should never do that to ordinal 
scales! What gives?

The fact of the matter is that this is a con-
troversial topic (see Knapp, 1990) into 
which we will not delve further. In this arti-
cle we will compare the choice between 
modelling ratings as a nominal variable (in 
which the model is unaware of order) and 
as an ordinal variable (in which order is 
considered). It is possible to also model this 
target variable as an interval scale, although 
we need to take some extra care to avoid out 
of domain problems for our predictions (for 
instance, our model assigning a rating of 13 
or -3 for a game).

Class weights

Review ratings (outside specialized me-
dia) have an exceedingly unbalanced distri-
bution, as it is quite common for people to 
give a game a 10 if they liked it, or a 0 if they 
disliked it. This makes our model care more 
about getting 0’s and 10’s right than getting 
other ratings right, as we saw in the preci-
sion and recall metrics for our simple model 
(Fig. 5). Although this is the approach that 
maximizes overall accuracy, this can some-
times lead to useless models (see Box 1 for 
an example).

One way to correct for this is to assign 
weights for each observation, increasing the 
importance of the ones that are less fre-
quent. This way, even though there are less 
reviews with a rating of 7, getting one of 
them wrong will “hurt” more (from a loss 
function standpoint) than getting a score of 
10 wrong.

Take note that this will decrease our 
model’s accuracy on the unbalanced 
dataset, but it will probably yield a more 
useful model in the end.
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Model architecture

Another choice when designing our 
models is the architecture that will be used 
for our neural network. The architecture de-
scribes how each individual neural con-
nects to one another. Good architecture al-
lows us to reduce the model’s size by 
exploiting some feature of the problem be-
ing addressed.

In previous sections, we hand-waved 
our simple model architecture, just saying it 
was a Recurrent Neural Network (RNN). In 
this section we explain this architecture in 
more detail and also introduce two other ar-
chitectures: the Long Short-Term Memory 
(LSTM) and the Gated Recurrent Unit 
(GRU).

• There will be a little bit of math on 
this section, so we better get our nota-
tions straight:

• upper case letters represent 2-D ten-
sors (also known as matrices);

• lower case letters represent 1-D ten-
sors (also known as vectors);

• the  operator represents the Hada-
mard product (also known as element-
wise multiplication);

• the  symbol represents the hyper-
bolic tangent function;

• the  symbol represents the sigmoid 
function.

With that out of the way let us describe 
our model architectures.

Recurrent Neural Networks (RNN)

The Vanilla RNN is one of the simplest 
examples of a sequence model there is. The 
model has a hidden state ht which is up-
dated at each time step of the sequence, 
based on the input value at that time (xt: for 
language models, this is usually some form 
of embedding representation of the input 
tokens) and on the value of the hidden state 
from the previous step (ht–1). This update is 
done by the following expression:

where: Wih and bih are tensors that de-
scribe how the input updates the hidden 
state; Whh and bhh are tensors that describe 
how the previous hidden state updates the 
current one.

These tensors are shared among all time 
steps in the sequence. This update rule can 
be represented by the following computa-
tion graph (Fig. 10; the bias terms bih and bhh
were omitted for brevity).

Note that at each time step, the new state 
is calculated as a combination of the current 
input and the previous state. This way, the 
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Figure 10. RNN computation graph.
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model has an internal memory that allows 
it to remember elements seen in the past. 
However, Vanilla RNNs have poor perfor-
mance on long sequences due to its inability 
to “judge” if an input needs to be remem-
bered or not.11 For a Vanilla RNN both the 
word “and” (a common uninformative stop 
word) and the word “awful” (a highly in-
formative word for game reviews) are the 
same in terms of whether they should be re-
membered by the internal hidden state.

Long Short-Term Memory (LSTM)

LSTM neural networks are a recurrent 
architecture proposed by Hochreiter & 
Schmidhuber (1997) to improve on the 
long-term dependencies problem seen in 
vanilla RNNs. This is done by introducing 
an internal memory cell ct and some update 
gates:

• the input gate it produces a scalar 
between 0 and 1 that judges how much 
influence the input should have on the 
internal memory cell. One can interpret 
this value as “what percentage of the in-
put should I keep on the internal cell 
state?”

• the forget gate ft produces a scalar 
between 0 and 1 that judges how much 
influence should the previous cell mem-
ory state have on the new internal mem-
ory cell state. One can interpret this 
value as “what percentage of the previ-
ous cell state should I keep?”

• the output gate ot produces a scalar 
between 0 and 1 and judges how much 
influence should the internal memory 
cell have on the output value (the hid-
den state ht). One can interpret this 
value as “what percentage of the cell 
state should I output?”

These gates and their dynamic can be 
represented by the following expressions. 
Note how the use of the sigmoid function 
guarantees the scalar [0, 1] domain on the 
output of each gate.

I will not describe all tensors here, as the 
notation is analogous to the one used for 
RNNs. Again, all weight tensors W and b 
are shared among all time steps. However, 
as the gates depend on the input and on the 
hidden state, the LSTM can learn to weight 
the importance of different inputs and 
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which inputs are worth remembering. As 
with RNNs, we can represent the update 
rule with a slightly more complicated com-
putation graph (Fig. 11). LSTMs have seen a 
lot of success in a wide range of applica-
tions, from speech recognition to beating 
human players in the popular game Dota 2 
(OpenAI, 2019).

Which models are you training, after all?

After all the considerations made in this 
section, I am finally ready to present which 
models I ran for this article. I decided to 
work with the following options for the de-
sign decisions we just discussed:

• Target measurement scale: Nomi-
nal and Ordinal;

• Class weights: Unbalanced and Bal-
anced;

• Model architecture: Vanilla RNN 
(hidden size = 256) and LSTM (hidden 
size = 128).

I will try all combinations between these 
design decisions, yielding a total of 8 differ-
ent models, training every combination for 
20 epochs. Note that I am using different 
hidden sizes between the RNN and LSTM. 
I did this to keep model capacity constant 

between architectures so that we can at-
tribute any improvement to the change in 
architecture itself. If we do not do this, we 
would not be able to distinguish between 
an improvement due to the architecture and 
an improvement due to the increase on the 
number of weights of the model.

RESULTS

After training all 8 models I can pick the 
best one before scoring the Nerd’s reviews. 
To that end, I will inspect the model level 
metrics and class level metrics we discussed 
above.

Model performance

Selecting the best epoch

For each model, I needed to select the 
best epoch before comparing their perfor-
mance. This happens because although the 
performance on the training set will usually 
get better and better as you train your 
model, the same cannot be said about the 
performance on the validation set, which is 
the one that matters. After a while, perfor-
mance on the validation set can start to de-
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Figure 11. LSTM computation graph. For brevity I represent only a single time step here and, as before, omit the 
bias tensors.
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grade, which is an indicative that you might 
be overfitting your training data that and 
getting worse at generalizing to unseen 
data.

With that in mind, I used the Negative 
Likelihood loss value for that epoch as my 
selection criteria for the model. Figure 12 
shows how this metric behaved over train-
ing time.

As we’ve seen with the simple model be-
fore, both training and validation Loss are 
highly volatile for models using the Vanilla 

RNN architecture (Fig. 12). This is a strong 
indicative that this model is too simple for 
our problem, and that it might take too 
much training time and data for it to 
achieve a good performance. The LSTM ar-
chitecture, on the other hand, fared way 
better, displaying a trend that is common 
for machine learning models: a constant de-
cline on the training Loss as the model gets 
better and better at predicting the data it al-
ready saw and a V-shaped behavior for the 
validation loss as after a point the model 
starts to overfit the data (Fig. 12). 
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Figure 12. Loss over training time for RNN and LSTM.

Figure 13. Accuracy over training time for RNN and LSTM.



The best model will be the one with the 
lowest validation loss. So, let us also take a 
look on the Accuracy and Mean Absolute 
Error (MAE) metrics before continuing 
(Figs. 13 and 14, respectively).

Notice that, unlike what was seen for 
loss both accuracy and MAE are stable or 
even improve for the validation set beyond 
the point in which the model started over-
fitting. This happens because Accuracy and 
MAE take into account only the final pre-
dicted value, while the loss also considers 
how confident the model is on the predic-
tion. Take the following examples:

• true review rating is 7, and the 
model predicted 9 with 55% accuracy;

• true review rating is 7, and the 
model predicted 9 with 98% accuracy.

Accuracy and MAE would be equally 
impacted by these examples, while the Loss 
would be much more affected by the second 
example then by the first. As the model 
overfits the training data it tends to get ever 
more confident in its predictions, which in 
turn makes its wrong predictions “hurt” 
more and more. For this article I opted to 
pick the epoch with the best loss for each 
model. The results are summarized in Table 
6.

Selecting the best model

Now that we have the best epoch for 
each model, we can proceed to select the 
best overall model. Since we want it to have 
good performance predicting all classes, I 
will use the precision and recall metrics, 
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Figure 14. Mean Absolute Error (MAE) over training time for RNN and LSTM.

Table 6. Best epoch for each model.
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combined into a single metric using a 
Macro-averaged F1-score described by the 
formula below:

where Pi and Ri are the precision and re-
call for score class i, and N is the overall 
number of classes. (The macro-averaged F1-
score is essentially the simple average be-
tween the individual F1- scores for each 
class, which in turn is the harmonical mean 
between precision and recall.) To calculate 
that let us check what are the values for pre-
cision and recall for all the models (Fig. 15).

We can immediately see – even before 
calculating any metrics – that the LSTM 
Nominal models perform better than all 
other variations (Fig. 15). Interestingly this 
architecture seems to have been less af-
fected by the unbalanced dataset than the 
others, though it is hard to tell by inspecting 
the chart whether the balanced or unbal-
anced model performs better. Table 7 
shows the F1-score for each model.

The unbalanced LSTM Nominal had the 
best performance based on the F1 criteria 
(Table 7). But the difference between it and 
the ordinal model was not that big; and re-
member, our motivation for testing an ordi-

nal model was to make our predictions re-
flect better the ordinal nature of reviews. 
Let us revisit those three examples from 
above before making any decisions.

Dr. Jekyll and Mr. Hyde (Fig. 16):
“You'd think I'm jokin', like I'm trying to be 
funny or somethin'. But, no, the fact that that 
game exists is a horrible abomination of 
mankind. That game is so freaking horrible, and 
I am not kidding” (AVGN, 2010).

Earthbound (Fig. 17): “I am blown away. 
That was one of the craziest games I've ever 
played. Sure it has flaws but I think it does be-
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Figure 15. Precision and recall for each model.

Table 7. F1-score by model. (For some models, recall 
or precision were both 0, which makes the F-1 unde-
fined. In this case I considered the F-1 score to be zero 
for that class).



long on the list of mandatory Super Nintendo 
games” (AVGN, 2018).

Castlevania 64 (Fig. 18): “The graphics are 
good, for Nintendo 64 standards, but I find them 
unappealing, because it's the beginning of the 
3D age, and they haven't perfected it yet. It's 
that awkward period between the old and the 
new” (AVGN, 2009).

For both Dr. Jekyll and Mr. Hyde (Ad-
vance Communication Co., 1988) and Earth-
bound (Ape / HAL Laboratory, 1994) we see 
remarkably similar output from both mod-
els. That is to be expected; both are very po-
larized reviews. However, the output for 
Castlevania 64 (Konami Computer Enter-
tainment Kobe, 1999) is different, and we 
see from this example that the model is bet-
ter able to take into account the ordinal na-
ture of the data. Although this did not im-
prove the accuracy of the model (in fact, it 
decreased exact accuracy by almost 10 per-
centage points), I decided that it was a price 
worth paying, especially when considering 
that our off-by-one metric is very similar on 
both models.

Predicting ratings for Angry Video 
Game Nerd reviews

Well, it has come to this. After all this 
work we will finally be able to assign 
proper review scores to the reviews made 
by the Angry Video Game Nerd. For this sec-
tion, I used the episode transcripts available 
on the AVGN Wiki (https://avgn.fandom.
com/). As for which episodes to test, I 
opted to score the Top 10 AVGN episodes, 
as selected by the Nerd himself (Table 8). I 
also added some of my favorite episodes 
that were not on the top 10 (Table 9).

So, how did it go? Figure 19 shows the 
predicted probability for each review, as 
well as the expected value calculated by av-
eraging the classes.12
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Figure 16. Predicted scores for Dr. Jekyll and Mr. Hyde
on both the nominal and ordinal model.

Figure 16. Predicted scores for Earthbound on both the 
nominal and ordinal model.

Figure 16. Predicted scores for Castlevania 64 on both 
the nominal and ordinal model.

12 Yes, exactly what I said you cannot do with an ordinal variable. But I did it anyway. It is a useful metric! Now 
you see why this is such a hotly debated topic.

Table 8. Top 10 AVGN episodes.
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Well, most things seem to make sense. 
Games such as Mario 3 (Nintendo R&D4, 
1988), Mega Man (Capcom, 1987) and Earth-
bound have almost perfect scores, which 

make sense given the praise the Nerd gives 
them in the reviews. On the other hand, 
games such Hong Kong 97 (HappySoft, 
1995) and Big Rigs: Over the Road Racing 

Figure 19. Angry Video Game Model predictions for Angry Video Game Nerd reviews.

Table 9. Some of my favorite AVGN episodes, listed in no particular order.
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(Stellar Stone, 2003) have terrible scores. But 
wait… what is this? Dr. Jekyll and Mr. Hyde
has a score of 5.4? This cannot be right. And 
what about Castlevania (Konami, 1986) get-
ting a score of 1.2? The Nerd had mostly 
praise for this game. What is happening 
here? WHAT IS THE MODEL THINKING?

To answer this question, I had to dig 
deeper. Something in those reviews is 
throwing off the model.

What is the model thinking?

Machine learning models’ predictions 
are extremely complicated to explain and 
this one is no different. The model is essen-
tially a black box, and a lot of effort has been 
put into it to understand why it made a pre-
diction. Machine learning is being used to 
allocate investments, predict credit risk, 
score test results, and even to drive cars. In 

all these applications, being able to explain 
a model decision is highly desirable, be it 
from a legal standpoint (to explain to a cus-
tomer why they were denied credit) or from 
a safety standpoint (to understand why an 
autonomous vehicle thought it could drive 
through a barn13). 

There is a lot of research being done in 
model explainability. Some works, such as 
the LIME method proposed by (Ribeiro et 
al., 2016), work by deriving proxy models; 
that is, simpler, linear and locally bound ap-
proximations of the full model that can be 
easily explained. Another approach is to 
use salience mapping, in which parts of the 
input are occluded from the model, and the 
variations in the predicted output can give 
us some insights on what is influencing the 
prediction. The latter approach works well 
for our problem, as we can feed parts of a 
longer review to the model to get a local-
ized sentiment for a sentence.

To investigate the predictions of our 
model, I ran them again multiple times. 
Each time, a small sliding window of 5 lines 
was cut out from the review, and the ex-
pected score was calculated by the model 
using only the text in the sliding window 
(“Only”) and using everything in the re-
view but the text on the sliding window 
(“Except”). Figure 21 shows the results of 
this analysis for Dr. Jekyll and Mr. Hyde and 
Castlevania (part 1).

We can see that the predicted sentiment 
can vary a lot throughout the review, as 
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Figure 20. What were they thinking? (source: AVGN).

Figure 21. Salience mapping for two AVGN episodes.

13 Maybe it was trained using Big Rigs: Over the Road Racing?
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shown by the wild variations observed in 
the blue line. However, the removal of a 
couple of five lines usually has little effect 
on the review, with a few exceptions. In Dr. 
Jekyll and Mr. Hyde, removing the beginning 
of the review significantly increased the 
score, while removing the ending signifi-
cantly decreased it. Let us take a close look 
on those sentences: “[The episode begins 
with a black-and-white clip; the first few 
seconds from the original Dr. Jekyll and Mr. 
Hyde review from 2004. The Nerd's voice 
can be heard over this.] In May of 2004, I 
gave a warning about a game called Dr. Jekyll 
and Mr. Hyde. I made it perfectly clear: DO 
NOT PLAY THIS GAME. But from what I un-
derstand... people have played it! They didn't 
listen. But it wasn't their fault... I only showed 
about one minute of footage from the game, and 
even though I talked about it at great length, it 
didn't do any good... [The Nerd drinks some 
Rolling Rock.] I called it a piece of ****. I called 
it an awful pile of steaming goat ****. But that 
was honoring it. I could've said anything, it 
wouldn't have mattered. I could've taken a **** 
on it, but my own **** would have been offended 
to lay on this loathsome piece of FILTH! Just the 
thought of covering this thing in doo-doo is like 
encasing it in gold! I curse the day I ever laid 
eyes on it. I curse the plastic that holds this 
abomination. My words are insufficient in de-
scribing the total insult to humanity that this 
"game" has provided! Everything that I've ever 
said and anything that anybody else has ever 
said is NOT enough! It MUST be shown. [He 
drinks more Rolling Rock.]” (AVGN, 2010).

Well, okay. I see why this might have 
such a large effect on the expected score. No 
surprises here. Now let us look at the end-
ing sentences: “No...! [The scene fades to 
black and fades back in a blur. The Jekyll-to-
Hyde transformation music from the game 
plays as the Nerd wakes up, back in his 
room, where he first transformed. He re-
sumes playing the game, and has an 
epiphany.] The Nerd: I think I get it. Why, it’s 
the best game ever made. It’s more than a game... 
it exposes the dual nature of the human spirit. 
The only way to win the game is to be Jekyll, but 
you wanna be Hyde so you can shoot ****. You 
see, it’s a constant battle between good and evil, 
and Jekyll must stay farther along his path than 

Hyde. If Hyde gains the lead, then evil will tri-
umph over good, and that’s the true conflict to 
the human soul. And to deny the evil com-
pletely, would only force it into the subcon-
scious mind, like a city broken into different so-
cial classes. People don’t wanna step outside 
their own boundaries, like Jekyll wandering into 
the wrong section of town. He’s unwelcome. 
Nevertheless, he must abide by his own good na-
ture. No wonder the cane doesn’t work. The 
game does not reward you for acting upon your 
malevolent intentions. It’s a proposed guideline 
for a set of morality rules to be programmed in 
real life! It uses the Victorian era as a fundamen-
tal depiction of outward respectability and in-
ward lust. It’s a metaphor for social and geo-
graphical fragmentation. It eludes the Freud 
theory of repression, in which unacceptable de-
sires or impulses are excluded from the con-
scious mind, and left to operate on their own... 
in the unconscious.” (AVGN, 2010).

Here we can see something interesting. 
Taken at face value, the Nerd’s words seem 
to sing high praise for the game. He makes 
it sounds almost like a transcendent experi-
ence. But it is all good old sarcasm. Appar-
ently, the model did not learn enough to be 
able to identify the true meaning of the 
Nerd’s words. 

The Castlevania example is less interest-
ing. The Nerd starts talking about how 
good it was when it was launched, and the 
impact it had in his life. But after that he 
proceeds to talk about all the frustrating 
parts of the game, and the model seem to 
have found that part more relevant. The 
bump in the orange line correspond to com-
ments by the Nerd on puns made on the 
game credits sequence. Apparently, the 
model really hates puns and the reviews are 
being pun-inshed for it. “Hmm...Trans 
Fisher? It reminds me of Terence Fisher, the di-
rector of many of the Hammer Horror films. 
That's a funny coincidence. Oh wait... Vran 
Stoker? Like Bram Stoker, the author of Drac-
ula? Wha-- Christopher Bee?! Is it a joke? I 
don't get it. Are they saying Christopher Lee is 
like a bee? [Bee with a face like Christopher 
Lee's comes buzzing by] No, they can't mean 
that. This is probably just a series of strangely 
coincidental typos. [The Nerd notices another 
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name] Belo Lugosi? Boris Karloffice? They're 
just ******* around. Love Chaney Jr.? Mix 
Schrecks? Green Stranger?! Is this supposed to 
be funny? Like just take a celebrity's name and 
change it around? That's like if I took the name 
‘Stephen Spielberg’, and called him ‘Stephen 
Jeelberg’. Like, that's not funny, that's kinder-
garten level! No, kindergarten students don't 
find that funny! Aliens don't find that funny! 
Well anyway, that's Castlevania for you. Good 
game, but holy **** is it hard. Now as promised, 
we're gonna plow through the rest of 'em, all the 
old-school Castlevania games. The ones that I 
grew up with— [The ‘What a horrible night 
to have a curse’ box from Castlevania II: Si-
mon's Quest appears in front of the Nerd, in-
terrupting him. The box disappears a few 
seconds later, and a day-to-night transition 
in the style of said game is shown. The 
nighttime music plays and the Nerd's room 
looks darker than before. The Nerd notices 
the Castlevania II: Simon's Quest cartridge]” 
(AVGN, 2009).

CONCLUSION

Can a model truly capture the full emo-
tion of an AVGN review? Maybe time will 
tell. In this article, however, I demonstrated 
that Recurrent Neural Networks, in particu-
lar the LSTM architecture, have a good per-
formance on the videogame review rating 
prediction task when compared to other 
sentiment analysis benchmarks. I also 
demonstrated that the model trained on 
this dataset can produce coherent ratings14

for the reviews performed by the Angry 
Video Game Nerd, barring issues of dealing 
with sarcasm.

FURTHER WORK

As discussed in the start, this work fo-
cused on simpler model architectures to 
make it more approachable. More ad-
vanced architectures such as Transformers 
might be able to better deal with long term 
dependences. I also only trained this model 
on the review dataset data, and I did not 

make use of transfer learning at all. Pre-
training on a larger and more general 
dataset might improve the quality of the 
embeddings. Testing contextual embed-
dings such as BERT (Devlin et al., 2018) 
might also improve how the model deals 
with context dependence ambiguity. Fi-
nally, training the model on longer reviews 
might improve its performance on the 
AVGN dataset, as the length of an AVGN 
episode is several times longer than the av-
erage length of a user review.
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