Ants in the Ant-Man movie, with biological notes

Elidiomar R. Da-Silva* & Thiago R. M. de Campos

Universidade Federal do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

*Email: elidiomar (at) gmail (dot) com

Belonging to the family Formicidae (order Hymenoptera), ants are cosmopolitan insects, inhabiting all kinds of terrestrial environments, except the arctic, with nearly 10,000 known species. Ants are also social animals, interacting inside their nests within each caste and each role. These worldwide animals are abundant and dominant in each habitat and niche (Hölldobler & Wilson, 1990), being responsible for a huge nectar consumption (amongst other substances acquired from plants), decomposing organic matter (hence helping with the ecological recycling of nutrients), as well as gathering and transporting seeds (thus helping plant dispersion) (Levey & Byrne, 1993). Artificial systems, such as urban centers, can be colonized and exploited by a variety of ant species. Overall, around 1% of the species could have a huge impact into anthropogenic activities (Zuben et al., 2004).

Ants, among all known insects, are quite prominent within our cultural practices, being frequently named and personified in fables, tales, movies, cartoons and even in more conventional works of art (Doré, 1968; Pérez & Almeralla, 2006; Souza, 2009; Castanheira et al., 2015). The prominent Spanish painter Salvador Dalí, for example, had a notorious passion for ants, which are well characterized in his paintings. Ants are likewise prominent in cartoons, such as Atom Ant (Hanna-Barbera Productions, 1965–1968) and The Ant and The Aardvark (United Artists, 1969–1971), and films, like A Bug’s Life (Pixar Animation Studios, 1998) and Antz (DreamWorks Pictures, 1998). More importantly for us, ants are featured even in superhero comics and films.

In the present article[1], we list all the ant species shown in the Ant-Man movie (Marvel Studios, 2015) and present notes on their biology and distribution. In order to do so, the Blu-ray version of the movie was meticulously watched, observing features such as morphology and behavior, which were then compared to scientific records.


At least three different characters wore the Ant-Man suit in the Marvel Universe, all of them somehow connected to the famous super hero team, The Avengers. Two of these characters, Hank Pym and Scott Lang, appeared in the 2015 movie. The hero’s power comes from the so-called Pym particles, a fictional substance that allows him to change and manipulate his size and strengthen his muscles, and a helmet that gives him full control of (and communication with) insects, especially ants.

Doctor Henry “Hank” Pym was the first Ant-Man, the inventor of the Pym particles, and one of the founders of The Avengers team, alongside Iron Man, Thor, the Hulk and Wasp (Fig. 1). Scott Lang was the second man to wear the suit, at first only to save his daughter Cassie Lang from a kidnapper, but afterwards becoming a hero in his own right. The third Ant-Man was Eric O’Grady, an official from the group called S.H.I.E.L.D. (DeFalco et al., 2009).

Figure 1. Cover of The Avengers #1 (September, 1964; art by Jack Kirby). Source: Wikimedia Commons.


Ant-Man is an American movie based on the comics, where Scott Lang receives a special suit that allows him to change the size of matter by manipulating the distance between atoms. It is the 12th movie of the Marvel Cinematic Universe (MCU). Starring Paul Rudd as Scott Lang, Evangeline Lilly as Hope van Dyne and Michael Douglas as Hank Pym, the movie was directed by Peyton Reed and a tremendous success, grossing over 500 million dollars.

Figure 2. Promotional poster of the Ant-Man movie. Source: Wikimedia Commons.


Four species are featured in the movie (Fig. 3): the crazy ant (Paratrechina longicornis); the bullet ant (Paraponera clavata); the carpenter ant (Camponotus pennsylvanicus); and the fire ant (Solenopsis geminata). These species are presented below in the typical manner of formal biological classification, with comments telling a little more about their biology and discussing how they are depicted in the movie.

Figure 3. Scene from Ant-Man showing ant farms with the four different species.

Family Formicidae
Subfamily Formicinae
Tribe Plagiolepidini

Genus Paratrechina Motschulsky, 1863
Paratrechina longicornis (Latreille, 1802)
(Figs. 4, 9A)

Paratrechina longicornis are pantropical insects (that is, distributed across the tropics), also present in urban areas and a remarkable agricultural pest (Witte et al., 2007; Ward, 2013). Its common name, crazy ant, is due to its swiftness and agitated behavior. Because of their opportunistic behavior, they are present in degraded areas, sometimes being dominant in this habitat (Wetterer et al., 1999). The movie mentions their well-known swiftness and dexterity, besides the fact that they can conduct electricity. We could not find anything proving the veracity about electrical conductivity in these ants (at least, nothing that would set them apart from all other animals), however, there are records of ants that are so attracted by electricity that they can damage wiring and electronic devices, such as computers and televisions (Slowik et al., 1996; Ball, 2008; Readhead, 2014).

Figure 4. Scenes from the Ant-Man movie featuring crazy ants.

Family Formicidae
Subfamily Formicinae
Tribe Camponotini

Genus Camponotus Mayr, 1861
Camponotus pennsylvanicus (De Geer, 1773)
(Figs. 5, 9B)

Species of the genus Camponotus are cosmopolitan and habitat-dominant organisms (Hölldobler & Wilson, 1990), being the most representative group inside their subfamily. Carpenter ants construct their nests in wood, such as hollow trees, stumps, logs, posts, landscaping timbers, and the lumber used in buildings. This is likely the root of their common name. Nests are usually built in rotten, decayed wood, although some nests may extend into sound heartwood in the center of the tree (ISU Extension and Outreach, 2017).

Camponotus pennylvanicus is widely distributed along the Nearctic region (the region from Greenland to the Mexican highlands), with a few records from the Neotropical region (the remainder of the Americas), setting up the canopy mosaic due to its twig-nesting behavior (Ward, 2013). In the movie, it is mentioned that carpenter ants have good movement and flight capacity.

Figure 5. Scenes from the Ant-Man movie featuring carpenter ants.

Family Formicidae
Subfamily Myrmicinae
Tribe Solenopsidini

Genus Solenopsis Westwood, 1840
Solenopsis geminata (Fabricius, 1804)
(Figs. 6, 7, 9C)

Ants of the genus Solenopsis are commonly named fire ants due to their painful sting. They are also considered a cosmopolitan insect pest in urban areas and the countryside, foraging and nesting on the ground (Wetterer, 2011; Ward, 2013). The species is identified in the movie as S. mandibularis Westwood, 1840, which is presently considered a synonym of another species S. germinata (Ghosh et al., 2005).

However, it is notoriously difficult to differentiate species within the genus Solenopsis (Cuezzo & Fernández, 2015). As such, it is possible that the species shown in the movie could be S. invicta Buren, 1972, an exotic species introduced in North-American territory. This species originally inhabits flooding grounds of the Amazon biome, where the colony can aggregate in a boat-shaped way and migrate to other areas through the water, like a rafting boat (Haight, 2006). In the movie, it is said that fire ants are excellent builders, showing the boat-shaped aggregation (Fig. 7).

Figure 6. Scenes from the Ant-Man movie featuring fire ants.

Figure 7. Scene from the Ant-Man movie where the fire ants build a raft to carry the hero.

Family Formicidae
Subfamily Paraponerinae
Tribe Paraponerini

Genus Paraponera F. Smith, 1858
Paraponera clavata (Fabricius, 1775)
(Figs. 8, 9D)

This species is also known as the bullet ant due to its strong and painful sting. They are arboreal (but ground-nesting), medium-sized ants with variable behavior depending on the habitat they live in (they are spread all around the Neotropical region). There are several studies about their omnivorous feeding behavior, foraging throughout the canopy (Fewell et al., 1996; Ward, 2013). They feed on nectar, however, they prefer animal resources, specially other insects, when available (Fewell et al., 1996). Brazilian indigenous peoples use these ants in rites of passage for teenage boys, who are submitted to the ants’ bites (Costa Neto, 2005). In the movie, they mention that the bullet ant sting is one of the most painful there is.

Figure 8. Scenes from the Ant-Man movie featuring bullet ants.


The Ant-Man movie shows quite a few interesting set of elements, which could be appreciated by the scientific community, entomologists and, especially, myrmecologists (researchers who study ants). Ants have a key role in the plot, being active and helping the leading figure in most situations. For example, Ant-thony, the carpenter-ant named by Scott Lang, is used as a mount throughout the film in order to get the hero to his destination. Such alliance, undoubtedly, allowed for a closer and more humanized relationship with the ants, that were previously addressed to by numbers by the first Ant-Man (and Lang’s mentor), Hank Pym.

Another interesting fact, in terms of science, is that all of the ants shown in the movie do behave differently, resulting in different strategies used by Lang depending on the encounter. In the battle taking place at Yellow Jacket’s facility, fire-ants conducted Ant-Man through the plumbing, the crazy-ants were responsible for damaging the electronic circuit, the bullet-ants attacked Yellow Jacket’s thugs and the carpenter-ants provided air support. In addition, the respective size of the ants was well demonstrated in the movie, which can be observed comparing different species sharing the same scene. Such comparison is also possible using Lang as a reference when he shrinks to the insects’ size. In addition, some information regarding the lifestyle of ants are slightly approached in the plot. The capacity that these bugs have to endure and carry extremely heavy objects (in proportion to their own body mass) is mentioned, as well as the “selfless” act of sacrifice in favor of the colony’s well-being, typical of social insects. Ant-Man himself benefits from this kind of behavior.

Figure 9. Ant species shown in the Ant-Man movie. A. Paratrechina longicornis. B. Camponotus pennsylvanicus. C. Solenopsis geminata. D. Paraponera clavata. Source:; photos A–C by April Nobile, photo D by Will Ericson.

It seems clear that the whole crew of the movie had a competent advisor about ant biology. However, specific details, such as Solenopsis mandibularis being a synonym and the possible mistake regarding Solenopsis identification show that, if any entomologist was consulted, probably he/she was not a Formicidae specialist. It was not mentioned during the credits any sort of consulting, although John (2015) revealed that the quantum physicist Dr. Spiros Michalakis (California Institute of Technology) was the scientific consultant. Additionally, some blogs (e.g., Cambridge, 2015; Lobato, 2016) identify the crazy-ant as Nylanderia fulva Mayr, 1862; however, we did not find any reason to doubt the identification given in the movie.

All of the aspects presented here can be used in science outreach efforts, including teaching (Da-Silva et al., 2014a; Wolpert-Gawron, 2015; Da-Silva, 2016). With proper adjustment to a classroom setting, this content could be used as a tool to introduce students (middle school, high school and even college) to science in a much more fun way. For instance, some species mentioned in the plot are urban pests and can impact our quality of life. Paraponera clavata does not occur in the Nearctic region, which could be used as a stepping-stone to the subject of introduced fauna. The worldwide genus Paratrechina also counts with invasive species, which spread around the world through trade routes and impact society due to hospital and school infestations (Solis et al., 2007).

In terms of science communication and popularization, movies like Ant-Man could also strongly contribute to demystify insects as “harmful animals”, a non-scientific statement that unfortunately is still common in textbooks and that helps to form the public’s negative image of such an important animal group (Da-Silva et al., 2014b). A more humanized treatment towards these (and other) animals in popular culture could be an alternative and suitable way to raise the public’s awareness for the conservation of natural resources in our planet.


Ball, L.S. (2008) Ants swarm Houston area and foul electronics. Laredo Morning Times. Available from: ve/051508/pagea6.pdf (Date of access: 09/Jul/ 2017).

Cambridge, J. (2015) An entomologist’s scientific review of ‘Ant-Man’. Inverse. Available from: mologist-s-scientific-review-of-ant-man (Date of access: 09/Jul/2017).

Castanheira, P.S.; Prado, A.W.; Da-Silva, E.R. & Braga, R.B. (2015) Analyzing the 7th Art – Arthropods in movies and series. Vignettes of Research 3(1): 1–15.

Coelho, L.B.N. & Da-Silva, E.R. (2016) I Colóquio de Zoologia Cultural – Livro do Evento. UNIRIO, Rio de Janeiro.

Costa Neto, E.M. (2005) O uso da imagem de insetos em cartões telefônicos: considerações sobre uma pequena coleção. Boletín de la Sociedad Entomológica Aragonesa 36: 317–325.

Cuezzo, F. & Fernández, F. (2015) A remarkable new dimorphic species of Solenopsis from Argentina. Sociobiology 62(2): 187–191.

Da-Silva, E.R. (2016) Quem tem medo de aranhas? Análise da HQ Aracnofobia à luz da Zoologia. Revista Urutágua 32: 10–24.

Da-Silva, E.R.; Coelho, L.B.N. & Ribeiro-Silva, T.B.N. (2014a) A Zoologia de “Sete Soldados da Vitória”: análise dos animais presentes na obra e sua possível utilização para fins didáticos. Enciclopédia Biosfera 10(18): 3502–3525.

Da-Silva, E.R; Coelho, L.B.N.; Santos, E.L.S.; Campos, T.R.M.; Miranda, G.S.; Araújo, T.C.; Carelli, A. (2014b)  Marvel   and   DC   characters   inspired   by   insects.   Research   Expo   International Multidisciplinary Research Journal 4(3): 10–36.

DeFalco, T.; Sanderson, P.; Brevoort, T.; Teitelbaum, M.; Wallace, D.; Darling, A. & Forbeck, M. (2009) The Marvel Encyclopedia. Updated and Expanded. DK, London.

Doré, G. (1968) As fábulas de La Fontaine ilustradas por Gustavo Doré. Editora Brasil-América, Rio de Janeiro.

Fewell, J.H.; Harrison, J.F.; Lighton, J.R.B. & Breed, M.D. (1996) Foraging energetics of the ant, Paraponera clavata. Oecologia 105: 418–527.

Ghosh, S.N.; Sheela, S. & Kundu, B.G. (2005) Ants (Hymenoptera: Formicidae) of Rabindra Sarovar, Kolkata. Records of the Zoological Survey of India, Occasional Papers 234: 1–40.

Haight, K. (2006) Defensiveness of the fire ant, Solenopsis invicta, is increased during colony rafting. Insectes Sociaux 53: 32–36.

Hölldobler, B. & Wilson, E.O. (1990) The Ants. Harvard University Press, Cambridge.

ISU Extension and Outreach (2017) Carpenter ant. Iowa State University – Horticulture and Home Pest News. Available from: https://hortnews.ex (Date of access: 12/Aug/2017).

John, T.  (2015) There is some real science behind the new Ant-Man film. Time. Available from: (Date of access: 14/Jul/2017).

Levey, D.J. & Byrne, M.M. (1993) Complex ant-plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology 74(6): 1802–1812.

Lobato, C. (2016). Las hormigas de Ant-Man. La ciencia de la vida. Available from: http://bio as-de-ant-man.html (Date of access: 09/Jul/ 2017).

Pérez, R. & Mendoza Almeralla, C. (2006) Los insectos em el cine. Un estudio preliminar. Boletín de la Sociedad Entomológica Aragonesa 38: 415–421.

Readhead, H. (2014) Forget giant rats: Super ants discovered in London. Available from: s-super-ants-discovered-in-london-4809638/#ix zz4oGTzO4oE (Date of access: 29/Jul/2017).

Slowik T.J.; Thorvilson H.G. & Green B.L. (1996) Red imported fire ant (Hymenoptera: Formicidae) response to current and conductive material of active electrical equipment. Journal of Economic Entomology 89: 347–352.

Solis, D.R.; Bueno, O.C.; Moretti, T.C. & Silva, T.S. (2007) Observações sobre a biologia da formiga invasora Paratrechina longicornis (Latreille, 1802) (Hymenoptera, Formicidae) em ambiente urbano brasileiro. Revista Brasileira de Zoociências 9(1): 75–80.

Souza, L.N. (2009) Relações interfabulares: “A cigarra e as formigas” de Monteiro Lobato. Anais do III CELLI (Colóquio de Estudos Linguísticos e Literários). Available from: (Date of access: 21/Jul/2017).

Ward, P.S. (2013) AntWeb: Ants of California. Available from: (Date of access: 08/Jul/2017).

Wetterer, J.K. (2011) Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecological News 14: 21–35.

Wetterer, J.K.; Miller. S.E.; Wheeler, D.E.; Olson, C.A.; Polhemus, D.A.; Pitts, M.; Ashton, I.W.; Himler, A.G.; Yospin, M.M.; Helms, K.R.; Harken, E.L.; Gallaher, J.; Dunning, C.E.; Nelson, M.; Litsinger, J.; Southern, A. & Burgess, T.L. (1999) Ecological dominance by Paratrechina longicornis (Hymenoptera: Formicidae), an invasive tramp ant, in Biosphere 2. The Florida Entomologist 82(3): 381–388.

Witte, V.; Attygalle, A.B. & Meinwald, J. (2007) Complex chemical communication in the crazy ant Paratrechina longicornis Latreille (Hymenoptera: Formicidae). Chemoecology 17: 57–62.

Wolpert-Gawron, H. (2015) Using Ant-Man in the classroom. Available from:  http://tweenteache oom (Date of access: 16/Jul/2017).

Zuben, A.P.B.; Almeida, M.G.R.; Lira, E.S. & Figueiredo, A.C.C. (2004) Manual de controle integrado de pragas. Prefeitura Municipal de Campinas, Campinas.


Elidiomar R. Da-Silva has a PhD in Zoology by the Museu Nacional (Rio de Janeiro) and is Professor of Biological Sciences at UNIRIO since 1994. A pop culture fan, especially of everything related to superheroes, it does not matter for him if it is Marvel or DC – he likes them both.

Thiago R. M. de Campos has a master’s degree in Neotropical Biodiversity by UNIRIO (Rio de Janeiro) and is currently a high school teacher at Colégio dos Santos Anjos. Also a pop culture fan of every media, but especially games.

[1] This article stems from an original presentation as a poster during the I Colóquio de Zoologia Cultural (2016; Rio de Janeiro, RJ, Brazil) and its abstract, published on the event’s proceedings (Coelho & Da-Silva, 2016).

Check other articles from this volume


This entry was posted in Biology, Comics, Movies, Super Heroes and tagged , , , , . Bookmark the permalink.