The entomological diversity of Pokémon

Rebecca N. Kittel

Museum Wiesbaden, Hessisches Landesmuseum für Kunst und Natur, Wiesbaden, Germany.

Email: rebecca.n.kittel (at) gmail (dot) com.

Download PDF

Pocket Monsters or as they are better known, Pokémon, are playable monsters which first appeared in the 1990’s as a video game in Japan, but soon expanded worldwide. They are still very successful with numerous games, a TV series, comic books, movies, toys and collectibles, additionally to the trading card game and video games. Most recently the release of Pokémon GO, an augmented reality game for smartphones, meant that Pokémon became as popular as never before. The game launched in 2016 and almost 21 million users downloaded it in the very first week in the United States alone (Dorwald et al., 2017).

The games and TV series take place in regions inhabited by humans and Pokémon. Each Pokémon lives in a specific environment (forests, caves, deserts, mountains, fields, seas, beaches, mangroves, rivers, and marshes). The humans try to catch Pokémons with Pokéballs, a device that fits even the largest Pokémon but that is still small enough to be placed into a pocket, hence the name Pocket Monster (Whitehill et al., 2016). After Pokémon have been caught, they are put to fight against each other, just like in the real world, in which humans (unfortunately) let cockerels, crickets, or dogs fight (Marrow, 1995; Jacobs, 2011; Gibson, 2005). The origin of Pokémon goes back to the role-playing game created by Satoshi Tajiri and released by Nintendo for the Game Boy (Kent, 2001). Tajiri was not only a game developer, but like many Japanese adults, grew up catching insects as a child. He wanted to design a game so that every child in Japan could play and let their critters fight, even if they lived in areas which are too densely populated to find insects in the wild. This resulted in the 151 Pokémon in the first versions of the game (“first generation”), with each version adding more Pokémon.

Today, there are 807 Pokémon (seventh generation). Almost all are based on real organisms (mostly animals, but many plants as well), while some depict mythological creatures or objects (e.g., stones, keys). Each Pokémon belongs to one or two of the following 18 types: Normal, Fire, Fighting, Water, Flying, Grass, Poison, Electric, Ground, Psychic, Rock, Ice, Bug, Dragon, Ghost, Dark, Steel, and Fairy (Bulbapedia, 2018). All Pokémon in the game are oviparous, which means they all lay eggs; probably because the creator was fond of insects or just for practical reasons.

Certain Pokémon also evolve; however, this kind of evolution is not the same as the biological concept of evolution. In Pokémon evolution is largely synonymous to metamorphosis, such as when a caterpillar turns into a butterfly. As this is the core concept of the game, almost all Pokémon evolve, not only the insects, but also mammals, rocks, and mythological creatures. Usually, they evolve with a complete or incomplete metamorphosis: either they just grow larger, or their look differs significantly between the adult and the young stages.

Insects are the largest group of organisms on earth (Zhang, 2011). There are more than one million described species of insects, of a total of 1.8 million known organisms (Zhang, 2011). They occupy all terrestrial environments (forests, fields, under the soil surface, and in the air) and freshwater; some are even found in the ocean. Additionally, they show a wide range of morphological and behavioral adaptations. This biodiversity is not reflected in the Pokémon world. In the present Generation VII, only 77 of the 807 Pokémon are “Bug type”: about 9.5% of all Pokémon. The aim of this work is to describe the entomological diversity of Pokémon based on taxonomic criteria of the classification of real insects.


The Pokédex was the source of primary information on Pokémon (Pokémon Website, 2018). The criteria to identify insects are either based on the type (Bug type) or morphology (resembles a real insect). Afterwards, the insect Pokémon were classified to the lowest possible taxonomic level (family, genus, or species) according to their real world counterparts. This classification of the Pokémon allowed the comparison of their biological data (such as ecological or morphological traits; Bulbapedia, 2018) with the current knowledge of real insects. The information of the biology of real insects is largely based on Borror et al. (1981).


Not all Bug types are insects; many of them represent other arthropods, like spiders, while some are from other invertebrate groups (Table 1). Also, five insect Pokémon do not belong to the Bug type (e.g., Trapinch (#328) is a Ground type; Table 2). In total, insects represent only 62 of the 807 Pokémon. In comparison, the vertebrate groups are overly well-represented by birds (61), mammals (232), reptiles (57), amphibians (23), and fishes (39) (Table 3).

Eleven insect orders are represented in the Pokémon world, namely Blattodea (with 1 Pokémon), Coleoptera (11), Diptera (3), Hemiptera (7), Hymenoptera (6), Lepidoptera (22), Mantodea (4), Neuroptera (3), Odonata (2), Orthoptera (2), Phasmatodea (1). They are listed below in systematic order.

Table 1. List of the 20 Pokémon that are Bug type, but are not insects. Mostly, they belong to other groups within the phylum Arthropoda.
Table 2. Taxonomic classification of the insect Pokémon (Arthropoda: Hexapoda: Insecta). All images are official artwork from Pokémon games (obtained from Bulbapedia, 2018). An asterisk (*) denotes Pokémon that are not Bug type.
Table 3. Comparison between the diversity of Pokémon “species” and their respective representatives in the natural world (Zhang, 2011).

Order: Odonata

Families: Libellulidae and Aeshnidae

Genera: Erythrodiplax and Anax

Yanma (#193) evolves to Yanmega (#469).

Yanma is a large, red dragonfly Pokémon. Like all dragonflies and damselflies, it lives near the water and hunts other insects for food. Yanma is territorial and prefers wooded and swampy areas. Based on its appearance, it belongs to the dragonfly family Libellulidae, and further to the genus Erythrodiplax Brauer, 1868.

Yanmega on the other hand is a large, dark green Pokémon. It is actually a different real-world species. Not only the colors are different, but also the morphology, like the appendages on the tip of the tail. Based on this, it belongs to the dragonfly family Aeshnidae, and to the genus Anax Leach, 1815. One could argue that it is based on Meganeura Martynov, 1932, a very large (wingspan up to 70 cm) but extinct dragonfly genus from the Carboniferous Period. However, the size alone should not be the indicator to classify the species, as many insectoid species are larger in the Pokémon world compared to the real world.

Order: Mantodea

Family: Mantidae

Scyther (#123) evolves to Scizor (#212, incl. Mega-Scizor).

Scyther is a bipedal, insectoid Pokémon. It is green with cream joints between its three body segments, one pair of wings and two large, white scythes as forearms. Scyther camouflages itself by its green color. Based on its appearance, it is classified as a praying mantis (or possible a mantidfly).

Scizor is also a bipedal, insectoid Pokémon. It is primarily red with grey, retractable forewings. Scizor’s arms end in large, round pincers. It appears to be based on a praying mantis, maybe with some references to flying red ants and wasp-mimicking mantidflies.

Although Scizor evolves from Scyther, they are very different and would actually be two different real-world species. Not only are the colors different, but also the morphology: the arms end in either scythes or pincers; Scyther has one pair of wings, Scizor has two.

Fomantis (#753) evolves to Lurantis (#754).

Fomantis is a plant-like and, at the same time, an insect-like Pokémon. Its main body is pink, with green hair, green tufts on the head, and green leaves as a collar. Fomantis is somewhat bipedal and is likely based on the orchid mantis Hymenopus coronatus Olivier, 1792 (Fig. 1), which is known for being able to mimic the orchid flower, along with the orchid itself.

Figure 1. Adult male of Hymenopus coronatus. Credit: Sander van der Wel (2010), Wikimedia Commons.

Lurantis is also plant- and insect-like. It is pink, white, and green. Lurantis looks and smells like a flower, to attract and then attack foes (and prey). It also disguises itself as a Bug Pokémon for self-defense. Lurantis is likely based on the orchid mantis as well as the orchid flower itself, as it is impossible to say where the flower ends and the insect starts. Orchid mantises mimic parts of a flower, by making their legs look like flower petals. Well camouflaged, they can wait for their prey, which will visit the flower for nectar.

Order: Blattodea

Pheromosa (#795).

Pheromosa is a bipedal anthropomorphic Pokémon. It has a rather slender build and is mostly white. Pheromosa originates from the Ultra Desert dimension in Ultra Space. Pheromosa is based on generic cockroaches just after they have molted (Fig. 2); during this stage, the animals are pale and vulnerable until their exoskeleton hardens and darken.

Figure 2. A freshly-molted cockroach (family Blattidae), leaving its exuvia behind. Credit: Donald Hobern (2010), Wikimedia Commons.

Order: Orthoptera

Family: Gryllidae

Kricketot (#401) evolves to Kricketune (#402).

Kricketot is a bipedal, bug-like Pokémon. It has a red body with some black and white markings. By shaking its head and rubbing its antennae together, it can create a sound that it uses to communicate. Based on its appearance, it is a cricket.

Kricketune is also a bipedal Pokémon with an insectoid appearance, also primarily red with some black and tan colored markings. It can produce sound by rubbing its arms on the abdomen. Kricketune appears to be based on crickets due to their sound-producing ability, but it somewhat resembles a violin beetle.

Both Kricketot and Kricketune are depicted with only 4 limbs, whereas insects are largely defined by having exactly six legs.

Order: Hemiptera

Families: Gerridae and Fulgoridae

Surskit (#283) evolves to Masquerain (#284).

Surskit is a blue insectoid Pokémon with some pink markings. It produces some sort of syrup, which is exuded as a defense mechanism or to attract prey. This Pokémon can also secrete oil from the tips of its feet, which enables it to walk on water as though skating. Surskit usually inhabits ponds, rivers, and similar wetlands, where it feeds on microscopic, aquatic organisms. This Pokémon is based on water striders. However, a water strider does not ooze syrup and neither does it need oil to walk on water; it can walk on water due to the natural surface tension.

Masquerain is a light blue Pokémon with two pairs of wings. On either side of its head is a large antenna that resembles an angry eye. These eyespots are used by many real-life moths and lantern-flies to confuse and intimidate would-be predators. Masquerain is in fact based on a lantern-fly.

Both “species”, water striders and lantern-flies, are only distantly related, belonging to two different families within the “true bugs” (Hemiptera).

Family: Cicadidae

Nincada (#290) evolves to Ninjask (#291) and then to Shedinja (#292).

Nincada is a small, whitish, insectoid Pokémon. The claws are used to carve the roots of tree and absorb water and nutrients. Nincada builds underground nests by the roots of trees. It is based on a cicada nymph, which lives underneath the soil surface. However, a cicada nymph usually does not have fully developed wings. Instead, they have short wing stubs which eventually will become fully functional wings – as usual amongst hemimetabolous insects.

Ninjask is a small, cicada-like Pokémon with two pairs of wings. Its body is mostly black with some yellow and grey markings. Ninjask is a very fast Pokémon and it can seem invisible due to its high speed. It is based on an adult cicada, with the colors somewhat resembling Neotibicen dorsatus (Say, 1825) (Fig. 3).

Shedinja is a brown and grey insectoid Pokémon. A hole between its wings reveals that its body is completely hollow and dark, as it possesses no internal organs. It is based on the shed husk (exuvia) that cicadas and other hemimetabolous insects leave behind when they molt.

Figure 3. Adult female of Neotibicen dorsatus, the bush cicada. Credit: Yakkam255 (2015), Wikimedia Commons.

Paras (#046) evolves to Parasect (#047).

Paras is an orange insectoid Pokémon with an ovoid body. On the top it has two little red and yellow mushrooms known as tōchūkasō. The mushrooms can be removed at any time, and grow from spores that are doused on this Pokémon’s back at its birth by the mushroom on its mother’s back. Tōchūkasō is an endoparasitoid that replaces the host tissue and can affect the behavior of its insect host. The base insect is based on a cicada nymph. The real-world tōchūkasō live on hepialid caterpillars in Tibet. However, there are many more species of entomopathogenic fungi in the world, most notable the genus Cordyceps (L.) Fr. (1818).

Parasect is an orange, insectoid Pokémon that has been completely overtaken by the tōchūkasō mushroom. The adult insect has been drained of nutrients and is now under the control of the fully-grown tōchūkasō. Parasect can thrive in dank forests with a suitable amount of humidity for growing fungi. The base insect is a deformed version of what is probably a cicada nymph, the parasitic mushroom having caused a form of neoteny, when the adults look like a juvenile form.

Order: Neuroptera

Family: Myrmeleontidae

Trapinch (#328) evolves to Vibrava (#329) and then to Flygon (#330).

Trapinch is an orange, insectoid Pokémon. This Pokémon lives in arid deserts, where it builds its nest in a bowl-shaped pit dug in sand. It sits in its nest and waits for prey to stumble inside. Once inside, the prey cannot climb back out. It is based on the larval stage of the antlion, which lives in conical sandy pits before maturing into winged adults.

Vibrava is a dragonfly-like Pokémon. Vibrava’s wings are not fully developed, so it is unable to fly very far. However, it is able to create vibrations and ultrasonic waves with its wings, causing its prey to faint. Vibrava is a saprotroph – it spits stomach acid to melt its prey before consumption. Vibrava is based on the adult stage of an antlion. Adult antlions and dragonflies look from a distance quite similar and are therefore often mistaken for each other.

Flygon is a desert-dwelling insectoid dragon with a green body and one pair of wings. Its wings make a “singing” sound when they are flapped. It uses this unique ability to attract prey, stranding them before it attacks. It is based on the winged, adult stage of the antlion.

Order: Coleoptera

Family: Lucanidae

Pinsir (#127, incl. Mega-Pinsir).

Pinsir is a bipedal beetle-like Pokémon with a brown body and a large pair of grey, spiky pincers on top of its head. Pinsir is based on a stag beetle.

Grubbin (#736) evolves to Charjabug (#737) and then to Vikavolt (#738).

Grubbin is a small insectoid Pokémon. It has a white body with three nubs on either side resembling simple legs. Grubbin typically lives underground. It uses its jaw as a weapon, a tool for burrowing, and for extracting sap from trees. Grubbin appears to be based on a larval beetle, also known as “grubs”.

Charjabug is a small cubic Pokémon resembling an insect-like battery. Its body consists of three square segments with two brown stubs on each side. It generates and stores electricity in its body by digesting food. This energy is stored in an electric sac. Charjabug appears to be based on a cocooned bug and a battery. It may also be based on the denkimushi (Monema flavescens Walker, 1855), a caterpillar in Japan that, when touched, can give a sting that is said to feel like an electric shock (Fig. 4).

Vikavolt is a beetle-like Pokémon with a large pair of mandibles. It produces electricity with an organ in its abdomen, and fires powerful electric beams from its huge jaws. Vikavolt appears to be based on a stag beetle. Its straight, scissor-like mandibles resemble those of Lucanus hayashii Nagai, 2000.

Figure 4. Larva of Monema flavescens. Credit: Pan et al. (2013), Wikimedia Commons.

Family: Coccinellidae

Ledyba (#165) evolves to Ledian (#166).

Ledyba is a red ladybird-like Pokémon with five black spots on its back. Female Ledyba have shorter antennae than male Ledyba. Ledyba is a very social Pokémon, e.g. in the winter they gather together to keep each other warm. Ledyba is probably based on the five-point ladybird Coccinella quinquepunctata Linnaeus, 1758 due to its color and/or on the harlequin ladybird Harmonia axyridis (Pallas, 1773), which clusters together in the winter.

Ledian is a large red bipedal ladybird-like Pokémon. Female Ledians’ antennae are shorter than the males’. Ledian sleeps in forests during daytime inside a big leaf.

Family: Scarabaeidae

Heracross (#214, incl. Mega-Heracross).

Heracross is a bipedal beetle-like Pokémon with a blue exoskeleton. The prolonged horn on its forehead ends in a cross-shaped (males) or heart-shape (females) structure. Heracross is most likely based on the Japanese rhinoceros beetle Allomyrina dichotoma Linneaus, 1771 (Fig. 5).

Figure 5. Adult male of Allomyrina dichotoma. Credit: Lsadonkey (2016), Wikimedia Commons.

Family: Lampyridae

Volbeat (#313) and Illumise (#314).

Volbeat is a bipedal firefly-like Pokémon. Its body is black with some blue, yellow, and red portions. It has a spherical yellow tail, which glows to communicate and draws geometric patterns in the sky while in a swarm. This is a male only Pokémon “species”; Illumise is its female counterpart. Volbeat lives in forests near clean ponds and is attracted by the sweet aroma given off by Illumise. It is based on a firefly like its counterpart Illumise. Its appearance may be based on a greaser, a subculture from the 1950’s.

Illumise is a bipedal firefly-like Pokémon. It is black and blue with some yellow markings. This is a female only Pokémon “species”; Volbeat is its male counterpart. It is a nocturnal Pokémon that lives in forests.  Illumise does not seem to share its coloring with any particular species. Illumise may be based on flappers, a 1920’s women’s style. Its mating behavior only slightly resembles the behavior of real-world fireflies, in which females use light signals to attract mates.

Family: Elateridae

Karrablast (#588) evolves to Escavalier (#589).

Karrablast is a round bipedal Pokémon with a yellow and blue body. When it senses danger, it spews an acidic liquid from its mouth. It targets another Pokémon, Shelmet, so it can evolve. It resides in forests and fields, and it often hides in trees or grass if threatened. Karrablast may be based on a Japanese snail-eating beetle due to its preference for attacking Shelmet, a snail-like Pokémon.

Escavalier is an insectoid Pokémon wearing a knight’s helmet. Its tough armor protects its entire body. It flies around at high speed, jabbing foes with its lances. Escavalier is probably based on the Drilus Olivier, 1790 genus, with references to a jousting knight. Drilus larvae are known for eating snails and stealing their shells, explaining why it attacks Shelmet and takes its shell to evolve into Karrablast.

Order: Hymenoptera

Family: Tenthredinidae

Weedle (#013) evolves to Kakuna (#014) and then to Beedrill (#015, incl. Mega-Bedrill).

Weedle is a small larval Pokémon with a body ranging in color from yellow to reddish-brown. It has a conical venomous stinger on its head and a barbed one on its tail to fend off enemies. Weedle can be found in forests and usually hides in grass, bushes, and under the leaves it eats. Weedle appears to be based on the larva of a wasp or hornet, although these real-world larvae usually don’t have defense strategies. The only larvae which feed directly off leaves are those of sawflies.

Kakuna is a yellow cocoon-like Pokémon. Kakuna remains virtually immobile and waits for its “evolution” to happen, often hanging from tree branches by long strands of silk. Although Kakuna is the pupa stage of a Hymenoptera, it showcases a silky cocoon, a feature usually found in Lepidoptera and only some Hymenoptera, like sawflies.

Beedrill is a bipedal, wasp-like Pokémon. Its forelegs are tipped with long, conical stingers. It stands on its other two legs, which are long, segmented, and insectoid in shape. Beedrill has two pairs of rounded, veined wings, and another stinger on its yellow-and-black striped abdomen. By its color pattern, Beedrill looks like a vespid wasp, but due to the previous stages of this Pokémon species, it must be based on Tenthredo scrophulariae Linneaus, 1758, the figwort sawfly.

Family: Apidae

Combee (#415) evolves to Vespiquen (#416, female).

Combee is a small insectoid Pokémon that resembles three social bees inside three hexagonal pieces of honeycomb stuck together; the top two have wings. Female Combee have a red spot on the forehead. Male Combee are not known to evolve into or from any other Pokémon. The sex ratio of Combee is 87.5% male and 12.5% female. Combee can fly with its two wings as long as the top two bees coordinate their flapping. They gather honey, sleep, or protect the queen. Combee is based on a mix of bees and their larvae living in honeycombs. (Bees arrange their honeycombs in a vertical manner, whereas wasps arrange them horizontally.)

In the hive of the real-world honey bee (Apis mellifera Linneaus, 1758), there is usually one queen bee and up to 40.000 female workers. So, the sex ratio of Combee does not reflect the ratio of female (workers) and male (drones) honey bees, but of the reproductive bees, the drones and the fertile queens. The larger number of drones is needed, since each queen will often mate with 10–15 males before she starts a new hive. Usually, drones can make up to 5% of the bees in a hive.

Vespiquen is a bipedal bee-like Pokémon with a yellow and black striped abdomen resembling an elegant ballroom gown. Underneath the expansive abdomen are honeycomb-like cells that serve as a nest for baby Combee. Vespiquen is a female-only Pokémon “species”. Vespiquen is the queen of a Combee hive, controlling it and protecting it, as well as giving birth to young Combee. The horizontal honeycombs hints that this “species” is a wasp rather than a bee.

Family: Formicidae

Durant (#632).

Durant is an ant-like Pokémon with a grey body and six black legs. It is territorial, lives in colonies and digs underground mazes. Durant grows steel armor to protect itself from predators. Durant is based on an ant, possibly the Argentine ant (Linepithema humile Mayr, 1868), due to the jaw and their invasive behavior.

Order: Lepidoptera

Family: Papilionidae

Caterpie (#010) evolves to Metapod (#011) and then to Butterfree (#012).

Caterpie is a green caterpillar-like Pokémon. It has yellow ring-shaped markings down the sides of its body and bright red “antenna” (osmeterium) on its head, which releases a foul odor to repel predators. The appearance of Caterpie helps to startle predators; Caterpie is probably based on Papilio xuthus Linnaeus, 1767, the Asian swallowtail (Fig. 6). The osmeterium is a unique feature of swallowtails. Caterpie will shed its skin many times before finally cocooning itself in thick silk. Its primary diet are plants.

Metapod is a green chrysalis Pokémon. Its crescent shape is based upon a Swallowtail chrysalis with a large nose-like protrusion and side protrusions resembling a Polydamas Swallowtail or Pipevine Swallowtail chrysalis (genus Battus Scopoli, 1777).

Butterfree is a butterfly Pokémon with a purple body and large, white wings, somewhat resembling a black-veined white Aporia crataegi (Linneaus, 1758). Although it is supposed to be a butterfly, it lacks the proboscis, which is typical of Lepidoptera, and presents teeth instead. Additionally, the body does not consist of the typical three segments of insects. Therefore, each stage seems to be based on a different species.

Figure 6. Larva of Papilio xuthus, with everted orange osmeterium. Credit: Alpsdake (2011), Wikimedia Commons.

Families: Geometridae and Arctiidae

Venonat (#048) evolves to Venomoth (#049).

Venonat has a round body covered in purple fur, which can release poison. It feeds on small insects, the only Lepidoptera caterpillar which is known to feed on prey instead of leaves belong the genus Eupethecia Grote, 1882 (Geometridae). However, Venonat does not resemble a caterpillar in general body shape or numbers of legs.

Venomoth is a moth-like Pokémon with a light purple body and interestingly two small mandibles. It has two pairs of wings, which are covered in dust-like, purple scales, although the color varies depending on their toxic capability. Dark scales are poisonous, while lighter scales can cause paralysis. These scales are released when Venomoth flutters its wings. The general appearance resembles species belonging to the Actiidae.

There is no cocoon stage for this species it is doubtful whether both stages were based on the same real-life species.

Family: Riodinidae

Scatterbug (#664) evolves to Spewpa (#665) and then to Vivillon (#666).

Scatterbug is a small caterpillar Pokémon with a grey body. If threatened by a bird Pokémon, it can spew a powder that paralyzes on contact. Similarly, the large white butterfly Pieris brassicae (Linneaus, 1758) is known to throw up a fluid of semi-digested cabbage, which contains compounds that smell and taste unpleasant to predators, such as birds.

Spewpa is a small insectoid Pokémon with a grey body covered by white furry material. In order to defend itself, Spewpa will bristle its “fur” to threaten predators or spray powder at them. Spewpa is based on a generic pupa of a moth or butterfly, probably a silkworm cocoon.

Vivillon is a butterfly-like Pokémon with wings that come in a large variety of patterns, depending in which climate it lives or rather, in which real-world region the player is. There is a total of 20 patterns known. It would be interesting to know whether they evolved due to allopatric speciation or if it is a case of mimicry.

Family: Psychidae

Pineco (#204) evolves to Forretress (#205).

Pineco is a pine cone-like Pokémon without visible limbs. It is based on a bagworm, the caterpillar stage of psychid Lepidoptera. Bagworms cover themselves with a case (the bag) made of surrounding material. This Pokémon uses tree bark and thus resembles a pine cone.

Forretress is a large spherical Pokémon, also without any visible limbs. It lives in forests, attaching itself immovably to tree trunks. Forretrees is also based on a bagworm.

Different bagworm species are adapted to their environment, to the plants they eat, and to the materials available for producing their case. Therefore, Pineco and Forretress are actually based on two different species, as they both are caterpillars. There is no adult stage for this Pokémon.

Burmy (#412) evolves to Wormadam (#413, female) or Mothim (#414, male).

Burmy is a small pupa-shaped Pokémon with a black body and six stubby legs. It is based on a bagworm pupa, which will metamorphose into a winged moth if male, or wingless moth if female. Burmy can change its “cloak” (case) depending on the environment it last battled.

Wormadam is a black bagworm-like Pokémon with a cloak of leaves, sand, or building insulation. Its cloak depends on Burmy’s cloak when it evolved, and so does it type (Grass, Ground or Steel). It is a female-only “species”, with Mothim as its male counterpart. Female psychid moth either don’t have wings at all or have only small wing stubs that don’t develop fully.

Mothim is a moth-like Pokémon with two pairs of legs and two pairs of wings, one larger than the other. Mothim is a nomadic nocturnal Pokémon, searching for honey and nectar. Instead of gathering honey on its own, it raids the hives of Combee. It is a male-only “species”, with Wormadam as its female counterpart.

Family: Nymphalidae

Wurmple (#265) evolves to Silcoon (#266) and then to Beautifly (#267).

Wurmple is a small caterpillar-like Pokémon with a mostly red body and many spikes on the top of its body. It can spit a white silk that turns gooey when exposed to air. Spikes or hairy appendages are common amongst nymphalid caterpillars. Also, it has five pairs of legs, whereas insects are known to have only three pairs of legs. However, many lepidopteran caterpillars have additionally “prolegs” (small fleshy stub-like structures) to help them move.

Silcoon is a cocoon-like Pokémon which is completely covered by white silk. Silcoon also uses the silk to attach itself to tree branches. Nymphalid cocoons are usually not woolly or hairy, but smooth.

Beautifly is a butterfly-like Pokémon with two pairs of wings. Beautifly has a long and curled black proboscis that it uses to drain body fluids from its prey. In the real world, Lepidoptera usually drink the nectar of flowers. One of the few exceptions are the species of the genus Calyptra Ochsenheimer, 1816, which pierce skin of animals and drink blood.

Family: Saturniidae

Wurmple (#265) evolves to Cascoon (#268) and then to Dustox (#269).

The caterpillar stage of this species is morphologically identical to the caterpillar stage of the “species” above: Wurmple. It appears that Wurmple can evolve in two forms: due to mimicry, sympatric speciation or are there morphological or biological characters, which have not been notices yet?

Cascoon is a round cocoon-like Pokémon covered in purple silk. Saturniid cocoons are usually covered in silk.

Dustox is a moth-like Pokémon. It has a purple body, two pairs of tattered green wings, and – just like Beautifly – two pairs of legs. Dustox is nocturnal and is instinctively drawn to light. Clearly, this is a moth. Some of the markings on its wings resemble typical markings of noctuid moths, but the big “fake eye” is typical of saturniids.

Larvesta (#636) evolves to Volcarona (#367).

Larvesta is a fuzzy caterpillar-like Pokémon. It has five red horns on the sides of its head, which it can use to spit fire as a defensive tactic to deter predators. Larvesta is based on a saturniid caterpillar.

Volcarona is a large moth-like Pokémon with four small feet and three pairs of wings. It releases fiery scales from its wings. Just like Larvesta, Volcarona is based on a saturniid moth, likely the Atlas moth Attacus atlas (Linneaus, 1758).

Order: Diptera

Family: Bombyliidae

Cutiefly (#742) evolves to Ribombee (#743).

Cutiefly is a tiny Pokémon with large wings. Cutiefly appears to be based on the bee fly, specifically the species Anastoechus nitidulus (Fabricius, 1794) (Fig. 7).

Ribombee is a tiny insectoid Pokémon with a large head, slightly smaller body, and thin arms and legs. It is covered in fluffy yellow hair. Two wings nearly as large as its body sprout from its back. The wings are clear with three brown loop designs near the base. Its four thin limbs have bulbous hands or feet. Ribombee uses its fluffy hair to hold the pollen it collects from flowers. It is based on a bee fly.

Figure 7. Adult of Anastoechus nitidulus. Credit: karakotokako (2007), image retrieved from https://

Family: Culicidae

Buzzwole (#794).

Buzzwole is a bipedal anthropomorphic Pokémon. It has four legs and two pairs of orange translucent wings. It uses its proboscis to stab and then drink “energy” off its enemies/prey. Buzzwole originates from the Ultra Desert dimension in Ultra Space. It is based on a mosquito and may specifically derive inspiration from Aedes albopictus (Skuse, 1894), which is an invasive species worldwide.

Mixed Orders: Lepidoptera and Phasmatodea

Families: Tortricidae, Hesperiidae, and Phylliidae

Sewaddle (#540) evolves to Swadloon (#541) and then to Leavanny (#542).

Sewaddle is a caterpillar-like Pokémon with a green body with three pairs of legs. It makes leafy “clothes” using chewed-up leaves and a thread-like substance it produces from its mouth. The leafy hood helps Sewaddle to hide from enemies. Sewaddle appears to be based on the caterpillar of the silver-spotted skipper Epargyreus clarus (Cramer, 1775), which produce silk and fold leaves over themselves for shelter (Fig. 8).

Swadloon is a round yellow Pokémon inside of a cloak of leaves. It lives on the forest ground and feeds on fallen leaves. Swadloon appears to be based on the chrysalis of Epargyreus clarus. Epargyreus clarus fold leaves over themselves for shelter as they age and, when cocooning, eventually use silk to stick the leaves together and form its chrysalis.

Leavanny is a bipedal, insectoid Pokémon with a yellow and green body with leaf-like limbs. It lives in forests and uses its cutters and sticky silk it produces to create leafy “clothing”. It also warms its eggs with fermenting fallen leaves. Leavanny has the features of several insects. Primarily it appears to be a bipedal leaf-insect (Phylliidae). Its general body structure is also similar to that of Choeradodis Serville, 1831 mantises, which also have laterally expanded thoraxes and abdomens.

Figure 8. Larva of Epargyreus clarus. Credit: Seth Ausubel (2013), image retrieved from


Only 11 insect orders (out of 30) are represented in the Pokémon world. Possible more, as differentiation of insect Pokémon and non-insect Pokémon are sometimes difficult. The main reason is, that many insect Pokémon are not depicted as a typical insect with its segmented body, the six legs, and two pairs of wings[1]. Many are depicted as bipedal (e.g., #401 Kricketot) or even in an anthropomorphic way (e.g., #795 Pheromosa). Also, insectoid Pokémon typically have only four limbs (instead of six). Many insectoid Pokémon also have fewer wings than insects (except for #637 Volcarona, which has more). Therefore, the definition of what is an insect Pokémon is debatable.

One clue is to look at the types each Pokémon belongs to. However, from the circa 80 Bug-type Pokémon, only about 60 are insects. The others belong to other arthropods groups, like Chelicerata, Crustacea, and Myriapoda. This is not surprising, as often creepy crawlies (basically everything that is small with legs) are all addressed as “bugs”. In fact, only member of the insect order Hemiptera are called “true bugs”.

Interestingly, Prado & Almeida (2017) have included Pokémon on their insect list, which are doubtful: #251 Celebi, #247 Pupitar, and #206 Dunsparce. None of them are considered insects here. Celebi may resemble a bipedal somewhat anthropomorphic insectoid, but nothing of the lifestyle or beyond the vague appearance gives a clue to an insect. Similarly, #247 Pupitar, might look like a pupa of an insect. However, both its “larval” stage (#256 Larvitar) and its final stage (#248 Tyranitar) resemble a dinosaur or some sort of dragon. Only the hint of “pupa” in its name, links Pupitar to an insect. Lastly, #206 Dunsparce was classified as a Hymenoptera by Prado & Almeida (2017). Is may look somewhat like an insect, even showing two pairs of wings (and no legs at all). Dunsparce, however, is based on a mythical “snake-like animal” called Tsuchinoko, also known as “bachi hebi” (or “bee snake”). Finally, Prado & Almeida (2017) have classified #212 Scizor as “unknown”, but here it is treated as a praying mantis (Mantodea). Similarly, those authors have classified #284 Masquerain as a Lepidoptera, but here we treat is as a true bug (Hemiptera).

Lastly, #649 Genesect resembles somewhat an ant covered by steel. However, according to the Pokédex (Pokémon Website, 2018), it is a man-made machine.

Compared to the vertebrates (birds, mammals, reptiles, amphibians, and fishes), many more insects live on earth (66,000 described species to about 1 million, respectively; Zhang, 2011). This ratio is, however, not represented in the Pokémon world (Table 3), most likely due to the fact that the majority of people prefer (cute and cuddly) furry animals over creepy insects, even though butterflies and dragonflies are regarded as beautiful.


Borror, D.J.; DeLong, D.M.; Triplehorn, C.A. (1981) An Introduction to the Study of Insects. Saunders College, Philadelphia.

Bulbapedia (2018) The community driven Pokémon encyclopedia. Available from: http://bulbaped (Date of access: 10/Sep/ 2018).

Dorward, L.J.; Mittermeier, J.C.; Sandbrook, C.; Spooner, F. (2017) Pokémon GO: benefits, costs, and lessons for the conservation movement. Conservation Letters 10(1): 160–165.

Gibson, H. (2005) Detailed Discussion of Dog Fighting. Michigan State University, East Lansing.

Jacobs, A. (2011) Chirps and sheers: China’s srickets slash. The New York Times. Available from: world/asia/chirps-and-cheers-chinas-crickets-clash-and-bets-are-made.html (Date of access: 10/Oct/2018).

Kent, S.L. (2001) The Ultimate History of Video Games. Crown Publishing Group, New York.

Morrow, L. (1995) History they don’t teach you: a tradition of cockfighting. White River Valley Historical Quarterly 35(2): 5–15.

Official Pokémon Website, The. (2018) The Official Pokémon Website. Available from: http://poke  (Date of access: 10/Sep/2018).

Prado, A.W. & Almeida, T.F.A. (2017) Arthropod diversity in Pokémon. Journal of Geek Studies 4(2): 41–52.

Whitehill, S.; Neves, L.; Fang, K.; Silvestri, C. (2016) Pokémon: Visual Companion. Pokémon Company International / Dorling Kindersley, London.

Zhang, Z.-Q. (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3703: 1–82.


I am grateful to Seth Ausubel (https://www. for kindly granting permission to use his photograph of Epargyreus clarus on this article. I would also like to thank Miles Zhang for valuable comments on an earlier version of the manuscript.


Dr. Rebecca Kittel is an entomologist working on parasitoid wasps. She is interested in all sorts of interactions of insects with human beings, regardless of whether they are real-life insects or purely fictional.

[1] Not all insects have two pairs of wings, though. For instance, the Diptera (flies) have only one, while the Siphonaptera (fleas) have none.

Check other articles from this volume



Ants in the Ant-Man movie, with biological notes

Elidiomar R. Da-Silva* & Thiago R. M. de Campos

Universidade Federal do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

*Email: elidiomar (at) gmail (dot) com

Download PDF

Belonging to the family Formicidae (order Hymenoptera), ants are cosmopolitan insects, inhabiting all kinds of terrestrial environments, except the arctic, with nearly 10,000 known species. Ants are also social animals, interacting inside their nests within each caste and each role. These worldwide animals are abundant and dominant in each habitat and niche (Hölldobler & Wilson, 1990), being responsible for a huge nectar consumption (amongst other substances acquired from plants), decomposing organic matter (hence helping with the ecological recycling of nutrients), as well as gathering and transporting seeds (thus helping plant dispersion) (Levey & Byrne, 1993). Artificial systems, such as urban centers, can be colonized and exploited by a variety of ant species. Overall, around 1% of the species could have a huge impact into anthropogenic activities (Zuben et al., 2004).

Ants, among all known insects, are quite prominent within our cultural practices, being frequently named and personified in fables, tales, movies, cartoons and even in more conventional works of art (Doré, 1968; Pérez & Almeralla, 2006; Souza, 2009; Castanheira et al., 2015). The prominent Spanish painter Salvador Dalí, for example, had a notorious passion for ants, which are well characterized in his paintings. Ants are likewise prominent in cartoons, such as Atom Ant (Hanna-Barbera Productions, 1965–1968) and The Ant and The Aardvark (United Artists, 1969–1971), and films, like A Bug’s Life (Pixar Animation Studios, 1998) and Antz (DreamWorks Pictures, 1998). More importantly for us, ants are featured even in superhero comics and films.

In the present article[1], we list all the ant species shown in the Ant-Man movie (Marvel Studios, 2015) and present notes on their biology and distribution. In order to do so, the Blu-ray version of the movie was meticulously watched, observing features such as morphology and behavior, which were then compared to scientific records.


At least three different characters wore the Ant-Man suit in the Marvel Universe, all of them somehow connected to the famous super hero team, The Avengers. Two of these characters, Hank Pym and Scott Lang, appeared in the 2015 movie. The hero’s power comes from the so-called Pym particles, a fictional substance that allows him to change and manipulate his size and strengthen his muscles, and a helmet that gives him full control of (and communication with) insects, especially ants.

Doctor Henry “Hank” Pym was the first Ant-Man, the inventor of the Pym particles, and one of the founders of The Avengers team, alongside Iron Man, Thor, the Hulk and Wasp (Fig. 1). Scott Lang was the second man to wear the suit, at first only to save his daughter Cassie Lang from a kidnapper, but afterwards becoming a hero in his own right. The third Ant-Man was Eric O’Grady, an official from the group called S.H.I.E.L.D. (DeFalco et al., 2009).

Figure 1. Cover of The Avengers #1 (September, 1964; art by Jack Kirby). Source: Wikimedia Commons.


Ant-Man is an American movie based on the comics, where Scott Lang receives a special suit that allows him to change the size of matter by manipulating the distance between atoms. It is the 12th movie of the Marvel Cinematic Universe (MCU). Starring Paul Rudd as Scott Lang, Evangeline Lilly as Hope van Dyne and Michael Douglas as Hank Pym, the movie was directed by Peyton Reed and a tremendous success, grossing over 500 million dollars.

Figure 2. Promotional poster of the Ant-Man movie. Source: Wikimedia Commons.


Four species are featured in the movie (Fig. 3): the crazy ant (Paratrechina longicornis); the bullet ant (Paraponera clavata); the carpenter ant (Camponotus pennsylvanicus); and the fire ant (Solenopsis geminata). These species are presented below in the typical manner of formal biological classification, with comments telling a little more about their biology and discussing how they are depicted in the movie.

Figure 3. Scene from Ant-Man showing ant farms with the four different species.

Family Formicidae
Subfamily Formicinae
Tribe Plagiolepidini

Genus Paratrechina Motschulsky, 1863
Paratrechina longicornis (Latreille, 1802)
(Figs. 4, 9A)

Paratrechina longicornis are pantropical insects (that is, distributed across the tropics), also present in urban areas and a remarkable agricultural pest (Witte et al., 2007; Ward, 2013). Its common name, crazy ant, is due to its swiftness and agitated behavior. Because of their opportunistic behavior, they are present in degraded areas, sometimes being dominant in this habitat (Wetterer et al., 1999). The movie mentions their well-known swiftness and dexterity, besides the fact that they can conduct electricity. We could not find anything proving the veracity about electrical conductivity in these ants (at least, nothing that would set them apart from all other animals), however, there are records of ants that are so attracted by electricity that they can damage wiring and electronic devices, such as computers and televisions (Slowik et al., 1996; Ball, 2008; Readhead, 2014).

Figure 4. Scenes from the Ant-Man movie featuring crazy ants.

Family Formicidae
Subfamily Formicinae
Tribe Camponotini

Genus Camponotus Mayr, 1861
Camponotus pennsylvanicus (De Geer, 1773)
(Figs. 5, 9B)

Species of the genus Camponotus are cosmopolitan and habitat-dominant organisms (Hölldobler & Wilson, 1990), being the most representative group inside their subfamily. Carpenter ants construct their nests in wood, such as hollow trees, stumps, logs, posts, landscaping timbers, and the lumber used in buildings. This is likely the root of their common name. Nests are usually built in rotten, decayed wood, although some nests may extend into sound heartwood in the center of the tree (ISU Extension and Outreach, 2017).

Camponotus pennylvanicus is widely distributed along the Nearctic region (the region from Greenland to the Mexican highlands), with a few records from the Neotropical region (the remainder of the Americas), setting up the canopy mosaic due to its twig-nesting behavior (Ward, 2013). In the movie, it is mentioned that carpenter ants have good movement and flight capacity.

Figure 5. Scenes from the Ant-Man movie featuring carpenter ants.

Family Formicidae
Subfamily Myrmicinae
Tribe Solenopsidini

Genus Solenopsis Westwood, 1840
Solenopsis geminata (Fabricius, 1804)
(Figs. 6, 7, 9C)

Ants of the genus Solenopsis are commonly named fire ants due to their painful sting. They are also considered a cosmopolitan insect pest in urban areas and the countryside, foraging and nesting on the ground (Wetterer, 2011; Ward, 2013). The species is identified in the movie as S. mandibularis Westwood, 1840, which is presently considered a synonym of another species S. germinata (Ghosh et al., 2005).

However, it is notoriously difficult to differentiate species within the genus Solenopsis (Cuezzo & Fernández, 2015). As such, it is possible that the species shown in the movie could be S. invicta Buren, 1972, an exotic species introduced in North-American territory. This species originally inhabits flooding grounds of the Amazon biome, where the colony can aggregate in a boat-shaped way and migrate to other areas through the water, like a rafting boat (Haight, 2006). In the movie, it is said that fire ants are excellent builders, showing the boat-shaped aggregation (Fig. 7).

Figure 6. Scenes from the Ant-Man movie featuring fire ants.
Figure 7. Scene from the Ant-Man movie where the fire ants build a raft to carry the hero.

Family Formicidae
Subfamily Paraponerinae
Tribe Paraponerini

Genus Paraponera F. Smith, 1858
Paraponera clavata (Fabricius, 1775)
(Figs. 8, 9D)

This species is also known as the bullet ant due to its strong and painful sting. They are arboreal (but ground-nesting), medium-sized ants with variable behavior depending on the habitat they live in (they are spread all around the Neotropical region). There are several studies about their omnivorous feeding behavior, foraging throughout the canopy (Fewell et al., 1996; Ward, 2013). They feed on nectar, however, they prefer animal resources, specially other insects, when available (Fewell et al., 1996). Brazilian indigenous peoples use these ants in rites of passage for teenage boys, who are submitted to the ants’ bites (Costa Neto, 2005). In the movie, they mention that the bullet ant sting is one of the most painful there is.

Figure 8. Scenes from the Ant-Man movie featuring bullet ants.


The Ant-Man movie shows quite a few interesting set of elements, which could be appreciated by the scientific community, entomologists and, especially, myrmecologists (researchers who study ants). Ants have a key role in the plot, being active and helping the leading figure in most situations. For example, Ant-thony, the carpenter-ant named by Scott Lang, is used as a mount throughout the film in order to get the hero to his destination. Such alliance, undoubtedly, allowed for a closer and more humanized relationship with the ants, that were previously addressed to by numbers by the first Ant-Man (and Lang’s mentor), Hank Pym.

Another interesting fact, in terms of science, is that all of the ants shown in the movie do behave differently, resulting in different strategies used by Lang depending on the encounter. In the battle taking place at Yellow Jacket’s facility, fire-ants conducted Ant-Man through the plumbing, the crazy-ants were responsible for damaging the electronic circuit, the bullet-ants attacked Yellow Jacket’s thugs and the carpenter-ants provided air support. In addition, the respective size of the ants was well demonstrated in the movie, which can be observed comparing different species sharing the same scene. Such comparison is also possible using Lang as a reference when he shrinks to the insects’ size. In addition, some information regarding the lifestyle of ants are slightly approached in the plot. The capacity that these bugs have to endure and carry extremely heavy objects (in proportion to their own body mass) is mentioned, as well as the “selfless” act of sacrifice in favor of the colony’s well-being, typical of social insects. Ant-Man himself benefits from this kind of behavior.

Figure 9. Ant species shown in the Ant-Man movie. A. Paratrechina longicornis. B. Camponotus pennsylvanicus. C. Solenopsis geminata. D. Paraponera clavata. Source:; photos A–C by April Nobile, photo D by Will Ericson.

It seems clear that the whole crew of the movie had a competent advisor about ant biology. However, specific details, such as Solenopsis mandibularis being a synonym and the possible mistake regarding Solenopsis identification show that, if any entomologist was consulted, probably he/she was not a Formicidae specialist. It was not mentioned during the credits any sort of consulting, although John (2015) revealed that the quantum physicist Dr. Spiros Michalakis (California Institute of Technology) was the scientific consultant. Additionally, some blogs (e.g., Cambridge, 2015; Lobato, 2016) identify the crazy-ant as Nylanderia fulva Mayr, 1862; however, we did not find any reason to doubt the identification given in the movie.

All of the aspects presented here can be used in science outreach efforts, including teaching (Da-Silva et al., 2014a; Wolpert-Gawron, 2015; Da-Silva, 2016). With proper adjustment to a classroom setting, this content could be used as a tool to introduce students (middle school, high school and even college) to science in a much more fun way. For instance, some species mentioned in the plot are urban pests and can impact our quality of life. Paraponera clavata does not occur in the Nearctic region, which could be used as a stepping-stone to the subject of introduced fauna. The worldwide genus Paratrechina also counts with invasive species, which spread around the world through trade routes and impact society due to hospital and school infestations (Solis et al., 2007).

In terms of science communication and popularization, movies like Ant-Man could also strongly contribute to demystify insects as “harmful animals”, a non-scientific statement that unfortunately is still common in textbooks and that helps to form the public’s negative image of such an important animal group (Da-Silva et al., 2014b). A more humanized treatment towards these (and other) animals in popular culture could be an alternative and suitable way to raise the public’s awareness for the conservation of natural resources in our planet.


Ball, L.S. (2008) Ants swarm Houston area and foul electronics. Laredo Morning Times. Available from: ve/051508/pagea6.pdf (Date of access: 09/Jul/ 2017).

Cambridge, J. (2015) An entomologist’s scientific review of ‘Ant-Man’. Inverse. Available from: mologist-s-scientific-review-of-ant-man (Date of access: 09/Jul/2017).

Castanheira, P.S.; Prado, A.W.; Da-Silva, E.R. & Braga, R.B. (2015) Analyzing the 7th Art – Arthropods in movies and series. Vignettes of Research 3(1): 1–15.

Coelho, L.B.N. & Da-Silva, E.R. (2016) I Colóquio de Zoologia Cultural – Livro do Evento. UNIRIO, Rio de Janeiro.

Costa Neto, E.M. (2005) O uso da imagem de insetos em cartões telefônicos: considerações sobre uma pequena coleção. Boletín de la Sociedad Entomológica Aragonesa 36: 317–325.

Cuezzo, F. & Fernández, F. (2015) A remarkable new dimorphic species of Solenopsis from Argentina. Sociobiology 62(2): 187–191.

Da-Silva, E.R. (2016) Quem tem medo de aranhas? Análise da HQ Aracnofobia à luz da Zoologia. Revista Urutágua 32: 10–24.

Da-Silva, E.R.; Coelho, L.B.N. & Ribeiro-Silva, T.B.N. (2014a) A Zoologia de “Sete Soldados da Vitória”: análise dos animais presentes na obra e sua possível utilização para fins didáticos. Enciclopédia Biosfera 10(18): 3502–3525.

Da-Silva, E.R; Coelho, L.B.N.; Santos, E.L.S.; Campos, T.R.M.; Miranda, G.S.; Araújo, T.C.; Carelli, A. (2014b)  Marvel   and   DC   characters   inspired   by   insects.   Research   Expo   International Multidisciplinary Research Journal 4(3): 10–36.

DeFalco, T.; Sanderson, P.; Brevoort, T.; Teitelbaum, M.; Wallace, D.; Darling, A. & Forbeck, M. (2009) The Marvel Encyclopedia. Updated and Expanded. DK, London.

Doré, G. (1968) As fábulas de La Fontaine ilustradas por Gustavo Doré. Editora Brasil-América, Rio de Janeiro.

Fewell, J.H.; Harrison, J.F.; Lighton, J.R.B. & Breed, M.D. (1996) Foraging energetics of the ant, Paraponera clavata. Oecologia 105: 418–527.

Ghosh, S.N.; Sheela, S. & Kundu, B.G. (2005) Ants (Hymenoptera: Formicidae) of Rabindra Sarovar, Kolkata. Records of the Zoological Survey of India, Occasional Papers 234: 1–40.

Haight, K. (2006) Defensiveness of the fire ant, Solenopsis invicta, is increased during colony rafting. Insectes Sociaux 53: 32–36.

Hölldobler, B. & Wilson, E.O. (1990) The Ants. Harvard University Press, Cambridge.

ISU Extension and Outreach (2017) Carpenter ant. Iowa State University – Horticulture and Home Pest News. Available from: https://hortnews.ex (Date of access: 12/Aug/2017).

John, T.  (2015) There is some real science behind the new Ant-Man film. Time. Available from: (Date of access: 14/Jul/2017).

Levey, D.J. & Byrne, M.M. (1993) Complex ant-plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology 74(6): 1802–1812.

Lobato, C. (2016). Las hormigas de Ant-Man. La ciencia de la vida. Available from: http://bio as-de-ant-man.html (Date of access: 09/Jul/ 2017).

Pérez, R. & Mendoza Almeralla, C. (2006) Los insectos em el cine. Un estudio preliminar. Boletín de la Sociedad Entomológica Aragonesa 38: 415–421.

Readhead, H. (2014) Forget giant rats: Super ants discovered in London. Available from: s-super-ants-discovered-in-london-4809638/#ix zz4oGTzO4oE (Date of access: 29/Jul/2017).

Slowik T.J.; Thorvilson H.G. & Green B.L. (1996) Red imported fire ant (Hymenoptera: Formicidae) response to current and conductive material of active electrical equipment. Journal of Economic Entomology 89: 347–352.

Solis, D.R.; Bueno, O.C.; Moretti, T.C. & Silva, T.S. (2007) Observações sobre a biologia da formiga invasora Paratrechina longicornis (Latreille, 1802) (Hymenoptera, Formicidae) em ambiente urbano brasileiro. Revista Brasileira de Zoociências 9(1): 75–80.

Souza, L.N. (2009) Relações interfabulares: “A cigarra e as formigas” de Monteiro Lobato. Anais do III CELLI (Colóquio de Estudos Linguísticos e Literários). Available from: (Date of access: 21/Jul/2017).

Ward, P.S. (2013) AntWeb: Ants of California. Available from: (Date of access: 08/Jul/2017).

Wetterer, J.K. (2011) Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecological News 14: 21–35.

Wetterer, J.K.; Miller. S.E.; Wheeler, D.E.; Olson, C.A.; Polhemus, D.A.; Pitts, M.; Ashton, I.W.; Himler, A.G.; Yospin, M.M.; Helms, K.R.; Harken, E.L.; Gallaher, J.; Dunning, C.E.; Nelson, M.; Litsinger, J.; Southern, A. & Burgess, T.L. (1999) Ecological dominance by Paratrechina longicornis (Hymenoptera: Formicidae), an invasive tramp ant, in Biosphere 2. The Florida Entomologist 82(3): 381–388.

Witte, V.; Attygalle, A.B. & Meinwald, J. (2007) Complex chemical communication in the crazy ant Paratrechina longicornis Latreille (Hymenoptera: Formicidae). Chemoecology 17: 57–62.

Wolpert-Gawron, H. (2015) Using Ant-Man in the classroom. Available from:  http://tweenteache oom (Date of access: 16/Jul/2017).

Zuben, A.P.B.; Almeida, M.G.R.; Lira, E.S. & Figueiredo, A.C.C. (2004) Manual de controle integrado de pragas. Prefeitura Municipal de Campinas, Campinas.


Elidiomar R. Da-Silva has a PhD in Zoology by the Museu Nacional (Rio de Janeiro) and is Professor of Biological Sciences at UNIRIO since 1994. A pop culture fan, especially of everything related to superheroes, it does not matter for him if it is Marvel or DC – he likes them both.

Thiago R. M. de Campos has a master’s degree in Neotropical Biodiversity by UNIRIO (Rio de Janeiro) and is currently a high school teacher at Colégio dos Santos Anjos. Also a pop culture fan of every media, but especially games.

[1] This article stems from an original presentation as a poster during the I Colóquio de Zoologia Cultural (2016; Rio de Janeiro, RJ, Brazil) and its abstract, published on the event’s proceedings (Coelho & Da-Silva, 2016).

Check other articles from this volume