Moa v Superman

Rodrigo B. Salvador

Museum of New Zealand Te Papa Tongarewa. Wellington, New Zealand.

Email: salvador.rodrigo.b (at) gmail (dot) com

Download PDF

During his heroic career Superman fought several foes. Some of these stories are truly memorable, like The Death of Superman (1992–1993), when he faced Doomsday. But many stories just ended up completely forgotten. Granted, there are some stories that most fans prefer to forget, like the film Batman v Superman: Dawn of Justice (2016), but some are curious or weird enough to eventually deserve a fresh look. The story I’m about to tell you is one of the latter kind.

This one happened during the first years of the so-called Bronze Age of Comics (1970–1985). Comic books from the Bronze Age retained lots of elements and conventions from the preceding Silver Age, but started to introduce stories more in tune with social issues, like racism and drugs. Likewise, comics also began including environmental issues and this is the topic I will focus on here. More specifically, on extinction.


It is the first story on Action Comics no. 425 (July 1973), written by Cary Bates, illustrated by Curt Swan and Frank Giacoia. It is called “The Last Moa on Earth!” and by the title alone, you can see it is about a giant extinct bird.

It’s a Bird… It’s a Plane… It’s Super– no, wait, it is actually a bird this time!

My goal here is to guide you through the story and offer some Biology inputs every now and then, explaining some things and “correcting” the bits the comics got wrong. I do know that writers should be free to invent and I wholeheartedly agree with that – it is science fiction after all! However, there are some sciency bits and pieces that are so simple to get right that there can be no excuse for giving the public wrong information.

The story starts off with hunter Jon Halaway in a New Zealand forest, being attacked by a giant flightless bird. He shoots and kills it, and decides to visit a local scientist (in Hawera, a town on the west coast of the North Island) to confirm his suspicions of the bird’s identity.

Elementary, my dear Halaway.

The scientist tells Halaway that he shot a bird thought to be extinct for 500 years and that there were once thousands of these animals in New Zealand. Both pieces of information are correct. Scientists estimated that there were circa 160,000 moa in New Zealand when Polynesian settlers arrived between 1,200 and 1,300 CE (Holdaway & Jacomb, 2000; Wilmshurst et al., 2010). There were nine species of moa in total and the Polynesians (who later became known as the Māori) had already extinguished them all by the early 1,400’s CE (Tennyson & Martinson, 2007; Perry et al., 2014).

The scientist then says that the bird was the largest of the moa species, Dinornis[1] maximus. While indeed this species was likely the largest[2], it inhabited only the South Island of New Zealand. The species from the North Island, where Halaway was hunting, is called Dinornis novaezealandiae. So the writer got the species wrong, but we cannot truly blame him: tens of moa “species” were described throughout the years, mostly because of the huge difference in size between the sexes of some species confused early researchers. Thus, the classification of moa species was really messed up until genetic studies started to be conducted from the late 1990’s onwards.

The skull of a North Island giant moa, Dinornis novaezealandiae. Source: Museum of New Zealand Te Papa Tongarewa (specimen MNZ S.242); ©Te Papa, all rights reserved.

On a similar note, D. maximus is actually an invalid name; the valid name for the South Island giant moa is D. robustus (Gill et al., 2010). That is because “D. maximus” was a second name given to describe the same species; to avoid confusion, only the first name ever used (D. robustus) is valid in these cases.

Halaway estimated the size of the slain moa at 12 feet (approximately 3.6 m), which is quite reasonable. The largest known specimens would have been 2 meters high at their backs or 3 meters high with their necks held straight up (something that they did not do; Tennyson & Martinson, 2007). Moreover, Halaway’s dead bird was a female, which are typically much larger than males in the two Dinornis species (Bunce et al., 2003; Tennyson & Martinson, 2007).

Box 1. What’s a moa anyway?

The moa belong to a group of birds called “ratites”, which also includes ostriches, emus, cassowaries, kiwi, rheas, and the extinct elephant birds. Recent research has shown that moa are not closely related to the other notable New Zealand ratites, the kiwi. Rather, they are closer to the charismatic South America tinamous[3] (Mitchell et al., 2014; Yonezawa et al., 2017). Since tinamous still retain some ability to fly, the moa’s ancestor was actually a flying bird (Gibbs, 2016).

The elegant crested tinamou, Eudromia elegans. Source: Wikimedia Commons (Evanphoto, 2009).

The loss of flight (alongside attaining a large body size) is a common occurrence on island environments where no mammalian predator is present. Other New Zealand species have also lost this ability; besides the kiwi (the typical example of a flightless bird), there are parrots (kakapo), rails (takahē) and wrens.



Halaway realizes that what he did was plain wrong. As mentioned above, during the Bronze Age comics became conscious of social and environmental problems – and extinction is a major problem, since it is usually our fault. This is important because, even though more than 350 years have elapsed after the last dodo was killed, most people still do not really grasp the idea that a species can disappear forever (Adams & Carwardine, 1900).

The “good” Mr. Halaway than devoted all his energy and resources into finding the slain moa’s egg. He succeeds and notes that the egg was being incubated in a hot spring with “strange fumes”. The egg was really big and appear egg-shaped in one panel and spherical in the other. Moa’s eggs were not spherical and not that large. Nevertheless, they were quite big and the largest known intact eggs are 20 and 25 cm tall (respectively, for the North Island and South Island Dinornis).

Of course the strange chemicals will grant the baby moa superpowers; otherwise this wouldn’t be a comic book.

Halaway finally arrives in Metropolis, where he is interviewed by none other than Clark Kent. On the highway, Halaway tells Clark that he wants to redeem himself of his “unforgivable deed” and hope that scientists will figure a way to use the egg to produce more moa. The repented hunter then faints, just as the baby moa hatches and escapes, throwing the car off-balance and into a river.

Clark takes off his suit and glasses and, after he’s more comfortable in his supersuit, saves Halaway and takes him to a hospital. Now I will cut the whole weird plot short and just say that the moa created an “organic link” (whatever that is) with Halaway via a microorganism, and was draining his energy. Typical crazy comic book stuff, but that’s not the point here. So let’s get back to the baby moa.

These “clawed terrors” were actually fluffy herbivores.


Superman starts searching Metropolis for the runaway moa and eventually finds it flying. Yes, flying – without wings, the comic-book moa flies by “thrashing its feet at super-speed”. In fact, Superman notices that the moa can fly faster than a super-sonic jet.

Also, even though just a few hours had passed since the moa escaped, when Superman found it, the bird had already doubled in size. And these were not the only superpowers granted to the moa by the mysterious fumes.

Yep, you read it right – that moa is flying with its feet.

Box 2. The moa’s archnemesis

The moa were herbivores, browsing on several types of leafy herbs, shrubs and trees (Wood et al., 2008). They were so abundant that it is thought their presence in New Zealand resulted in the evolution of a set of counter-measures in some plant lineages, which have small and hardened leaves, and sometimes also spines (Greenwood & Atkinson, 1977; Cooper et al., 1993; Worthy & Holdaway, 2002). But who ate the moa? Well, they were were so large that one would think they had no natural predators before the hungry Polynesians arrived. But that would be wrong – moa were hunted by giant eagles.

Naturally one would think of this – it is New Zealand after all! Source: The Hobbit: An Unexpected Journey (Warner Bros. Pictures, 2012), screen capture.

They are known as Haast’s eagles, after the naturalist who first described them, Sir Johann von Haast. They are the largest known true raptors, in both size and weight. They could reach a 2.6 m wingspan (somewhat smallish for their bulk) and 16 kg in weight, with females being larger (Brathwaite, 1992; Tennyson & Martinson, 2007). To hunt and eat their massive prey, Haast’s eagles had strong legs and feet, with huge claws. Unfortunately, these amazing birds could not survive after the moa became extinct and likely did not last much longer than 1,400 CE (Tennyson & Martinson, 2007).

The skull of a Haast’s eagle, Aquila moorei. Source: Museum of New Zealand Te Papa Tongarewa (specimen MNZ S. 22473); ©Te Papa, all rights reserved.


The moa also gained the ability to use its feathers as projectiles that could even pierce an elephant’s hide (according to Superman). Needless to say, birds cannot do that unless they are also Pokémon. Finally, the moa could instantly regrow lost limbs, a feat that few heroes (and absolutely no birds) can achieve.

Giant Moa uses Feather Barrage. It’s not very effective…
Holy regeneration, Batman!

After some more fighting, Superman understands that the bird just wants to go back home – to that place with the fumes and the lonely pink flower. Superman realizes that the flower is a “Quixa blossom”, as he calls it, and says it is a rare plant found only in northwest New Zealand.

Since my knowledge of plants is fairly limited, I asked a New Zealand botanist for help with this one. I was told that there is no flower with that name in the country and actually nothing that even remotely looks like it.

The “Quixa blossom” is actually the least believable thing in this whole story.

In any event, Superman finds the moa’s home and takes it back there, thus stopping the energy draining effect and saving Halaway. Superman then proclaims the area a “moa preserve” and sets up a fence around it. A thoughtful move, but one that completely overlooks the fact that the supermoa could fly.


The story ends with Halaway saying that “the world owns the moa another chance for survival”. Unfortunately, reality is not so kind: our species has wiped the moa off the face of the Earth and there is no second chance.

Overall, if you ignore the superpowers and the “organic link” stuff, this Superman story is actually a nice portrayal of an extinct species and its tragic fate on the hands of humankind. If nothing else, I hope it has inspired a reader somewhere to become a scientist or to fight to preserve other endangered animals.


Adams, D. & Carwardine, M. (1990) Last Chance to See. William Heinemann, London.

Brathwaite, D.H. (1992) Notes on the weight, flying ability, habitat, and prey of Haast’s Eagle (Harpagornis moorei). Notornis 39: 239–247.

Bunce, M.; Worthy, T.H.; Ford, T.; Hoppitt, W.; Willerslev, E.; et al. (2003) Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425: 172–175.

Cooper, A.; Atkinson, I.A.E.; Lee, W.G.; Worthy, T.H. (1993) Evolution of the moa and their effect on the New Zealand flora. Trends in Ecology & Evolution 8: 433–437.

Mitchell, K.J.; Llamas, B.; Soubrier, J.; Rawlence, N.J.; Worthy, T.H.; et al. (2014) Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 344: 898–900.

Gibbs, G. (2016) Ghosts of Gondwana: The History of Life in New Zealand. Fully Revised Edition. Potton & Burton, Nelson.

Gill, B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; et al. (2010) Checklist of the Birds of New Zealand, Norfolk and Macquairie Islands, and the Ross Dependency, Antarctica. Te Papa Press, Wellington.

Greenwood, R.M. & Atkinson, I.A.E. (1977) Evolution of divaricating plants in New Zealand in relation to moa browsing. Proceedings of the New Zealand Ecological Society 24: 21–33.

Holdaway, R.N. & Jacomb, C. (2000) Rapid extinction of the moas (Aves: Dinornithiformis): model, test, and implications. Science 287: 2250–2254.

Perry, G.L.W.; Wheeler, A.B.; Wood, J.R.; Wilmshurst, J.M. (2014) A high-precision chronology for the rapid extinction of New Zealand moa (Aves, Dinornithiformes). Quaternary Science Reviews 105: 126–135.

Tennyson, A. & Martinson, P. (2007) Extinct Birds of New Zealand. Te Papa Press, Wellington.

Wilmshurst, J.M.; Hunt, T.L.; Lipo, C.P.; Anderson, A.J. (2011) High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. PNAS 108(5): 1815–1820.

Worthy, T.H. & Holdaway, R.N. (2002) The Lost World of the Moa: Prehistoric Life of New Zealand. Canterbury University, Christchurch.

Wood, J.R.; Rawlence, N.J.; Rogers, G.M.; Austin, J.J.; Worthy, T.H.; Cooper, A. (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quaternary Science Reviews 27: 2593–2602.

Yonezawa, T.; Segawa, T.; Mori, H.; Campos, P.F.; Hongoh, Y.; et al. (2017) Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Current Biology 27: 68–77. 


I am very grateful to Dr. Carlos Lehnebach for the help with flower, to Alan Tennyson for helping me to correct some mistakes on moa/eagle biology, and to Museum of New Zealand Te Papa Tongarewa for allowing the usage of the photographs herein.


Dr. Rodrigo Salvador is a paleontologist/ zoologist who studies mollusks, but just happens to have a soft spot for giant flightless birds. He is a diehard DC Comics fan, but to be honest, he never really liked Superman. Instead, he prefers to read the stories of the caped crusader and his extensive Gotham “family”.

[1] Dinornis means “terrible bird”, just like dinosaur means “terrible lizard”.

[2] The largest tibia (a leg bone) ever found belongs to this species, being 1 m long (Tennyson & Martinson, 2007).

[3] Tinamous are not typically included in the ratites group, rather being historically considered a separate (basal) lineage and grouped together with ratites in the more inclusive “palaeognaths” group. However, the work of Mitchell and collaborators (2014) have placed the tinamous well inside the ratites.

Check other articles from this volume



Why (and how) Superman hides behind glasses: the difficulties of face matching

Kay L. Ritchie1,2 & Robin S. S. Kramer1

1 Department of Psychology, University of York, York, UK.

2 School of Psychology, University of Lincoln, Lincoln, UK.

Emails: kritchie (at) lincoln (dot) ac (dot) uk; remarknibor (at) gmail (dot) com

Download PDF

As a mild-mannered reporter, Clark Kent is able to blend into human society without drawing much attention to himself. Although he utilises several methods of disguise (clothing, posture, hair style), perhaps his most famous is a simple pair of glasses (see Figure 1). We know that wearing glasses can make you look more educated and intelligent (e.g., Hellström & Tekle, 1994), but for Superman, the goal is primarily to hide his true identity. Of course, one of the cornerstones of enjoying superhero fiction is that we suspend our disbelief and try to ignore the obvious questions (for example, how useful or plausible is it that Squirrel Girl can communicate with and understand squirrels?!). However, the scientist inside us sometimes breaks through and we are given the opportunity to investigate. Here, we tackle the question that comic book fans have been asking for decades – could Superman really hide his identity using a pair of glasses?


Figure 1. Clark Kent’s transformation into Superman. [Image downloaded from Flickr; labelled CC BY 2.0.]

Photos of faces appear on almost all official forms of identification, from passports and driving licences to university staff and student cards. We have this intuition that our face is a good way to identify us, but a growing body of evidence suggests otherwise. Of course, if we consider the people we know personally (friends, family, partners), it’s almost impossible to find a picture of them that you wouldn’t recognise. Even in their passport photos, which could be up to ten years old in the UK, you would probably recognise them straight away. Studies have shown that we can even recognise people we know from very degraded images, such as CCTV footage (Burton et al., 1999). Therefore, it’s no surprise that the presence or absence of a pair of glasses wouldn’t stop you from being able to recognise your sister or husband. This amazing tolerance for the way a familiar person’s face can vary across different photos leads us to think we are good at recognising all faces. In fact, we are significantly worse when asked to consider unfamiliar people’s faces (e.g., Clutterbuck & Johnston, 2002, 2004), even when the photos are taken from real university ID cards (Bindemann & Sandford, 2011).

A common task used in psychology studies to examine photo-ID-style face identification is a face matching task. Typically, participants are shown two images side-by-side and asked whether the photos show the same person or not. Usually, only half of the image pairs show the same person in both photos, although depicted in different poses, lighting, expressions, etc. In the remaining image pairs, the two photos show two different but similar-looking people (e.g., two young, brunette women).

Participants do very well (often perfectly) at the task when they are familiar with the person (or one of the people) pictured, but are much worse when they are unfamiliar with the people (see Figure 2). When we see two photos of someone we know, we even seem to be blind to how difficult the task would be for people who don’t know that person, over-estimating other people’s performance with faces we recognise (Ritchie et al., 2015).

So why are we so bad at this task for people we are unfamiliar with? To answer this, we need to start with why we are so good at it for people we are familiar with.


Figure 2. Example face matching task images. Top: Two photos of the same familiar person. Despite changes in pose, lighting, and expression, it is seems easy to tell that the two photos show the same person. [Images downloaded from Wikimedia Commons; labelled CC BY-SA 3.0 (left) and CC BY 2.0 (right).] Bottom: Two photos of the same unfamiliar person. It is more difficult to tell that the two images show the same person when we are not familiar with them. [The person pictured has given consent for her images to appear here.]

While we are getting to know someone’s face, we experience a lot of variation in their appearance. We see them from different angles, in different lighting, wearing their hair in different ways, etc. This variability seems to be important for learning new people (Murphy et al., 2015; Ritchie & Burton, 2016). But this same variability gets in the way when we are presented with two images of an unfamiliar person – the photographs can look very different and this might lead us to think they show two different people.

Why is any of this actually important? Coming back to the example of photo-ID, try to consider the task given to Jenny, a fictional passport controller. Jenny’s job is to decide whether the person standing in front of her is the same person as the one pictured in the passport they hand over. The passport photo may be up to ten years old, and more importantly, Jenny has never seen this person before. We know already that this unfamiliar face matching task is a hard one for regular people who do not do this as a routine part of their job, but researchers have also shown that even passport controllers do not outperform students on this sort of task (White et al., 2014b).

Now let’s get back to Superman and his glasses. In our new study (Kramer & Ritchie, 2016), we showed participants pairs of images where both wore glasses, pairs where neither face wore glasses, and ‘mixed’ pairs where one wore glasses and one did not. Half of the pairs in each of these image conditions showed the same person, and half depicted two different (but similar-looking) people. Participants were simply asked to indicate whether they thought the images were of the same person or two different people. Importantly, we only used images of people who were unfamiliar to our participants (and we confirmed this at the end of the study). In addition, all our images were collected from Google Image searches and showed natural variation in pose, lighting, etc. (see Figure 3 for an example of face images that naturally vary).

Figure 3. Images of Brandon J. Routh with and without glasses. The image on the left shows him as Clark Kent, in the film Superman Returns (2006); the image on the right is more recent and familiar to fans of the TV series Arrow (2012–present) and DC’s Legends of Tomorrow (2016–present). Of course, in our study, we only used images of unfamiliar people. [Left image downloaded from Flickr; labelled CC BY-NC-SA 2.0. Right image downloaded from Wikimedia Commons; labelled CC BY 2.0.]

When neither image wore glasses, accuracy (percentage correct) was 80.9%, and when both images wore glasses, accuracy was 79.6%. Statistically, performance in these two conditions did not differ, and these levels of accuracy are in line with those reported elsewhere (e.g., Burton et al., 2010). However, in the ‘mixed’ image condition, where one face wore glasses and the other did not, accuracy dropped to 74%. This drop in performance (although it sounds quite small) was statistically lower than in the ‘no glasses’ and ‘glasses’ conditions. This means that we can be confident that our ‘mixed’ condition really did make people worse at the task. For this reason, Superman may have hit upon a disguise that isn’t just easy but might actually work. By simply donning a pair of glasses, he may well make it that little bit harder for strangers to tell that he also doubles as a reporter living among them.

This effect of glasses might be hugely problematic for photo-ID in security settings. In the USA, people are allowed to wear glasses in their passport photos but may not be wearing glasses when they go through passport control. The 6% drop in accuracy found in our study, which could also be phrased as an increase in misidentifications, quickly scales up to thousands of potential mistakes when we consider the vast numbers of people going through passport control every day.

This all seems fairly bleak when it comes to photo-ID so many researchers have been working on ways that we might improve the situation. One recent suggestion has been to provide multiple images (White et al., 2014a; Menon et al., 2015). By including several photographs as reference images for comparison, instead of just the one typically found on IDs, scientists have produced significant improvements in accuracy. This is an area of ongoing investigations and other types of improvements to photo-ID will continue to be explored.


Bindemann, M. & Sandford, A. (2011) Me, myself, and I: Different recognition rates for three photo-IDs of the same person. Perception 40: 625–627.

Burton, A.M.; Wilson, S.; Cowan, M.; Bruce, V. (1999) Face recognition in poor quality video: Evidence from security surveillance. Psychological Science 10: 243–248.

Burton, A.M.; White, D.; McNeill, A. (2010) The Glasgow Face Matching Test. Behavior Research Methods 42: 286–291.

Clutterbuck, R. & Johnston, R.A. (2002) Exploring levels of face familiarity by using an indirect face-matching measure. Perception 31: 985–994.

Clutterbuck, R. & Johnston, R.A. (2004) Matching as an index of face familiarity. Visual Cognition 11(7): 857–869.

Hellström, A. & Tekle, J. (1994) Person perception through facial photographs: Effects of glasses, hair, and beard on judgments of occupation and personal qualities. European Journal of Social Psychology 24: 693–705.

Kramer, R.S.S. & Ritchie, K.L. (2016) Disguising Superman: How glasses affect unfamiliar face matching. Applied Cognitive Psychology: advance online publication (DOI: 10.1002/acp.3261). Available from: (Date of access: 14/Sep/2016).

Menon, N.; White, D.; Kemp, R.I. (2015) Variation in photos of the same face drives improvements in identity verification. Perception 44(11): 1332-1341.

Murphy, J.; Ipser, A.; Gaigg, S.B.; Cook, R. (2015) Exemplar variance supports robust learning of facial identity. Journal of Experimental Psychology: Human Perception and Performance 41: 577–581.

Ritchie, K.L. & Burton, A.M. (2016) Learning faces from variability. Quarterly Journal of Experimental Psychology: advance online publication (DOI: 10.1080/17470218.2015.1136 656). Available from: http://www.tandfonline. com/doi/abs/10.1080/17470218.2015.1136656 (Date of access: 14/Sep/2016).

Ritchie, K.L.; Smith, F.G.; Jenkins, R.; Bindemann, M.; White, D.; Burton, A.M. (2015) Viewers base estimates of face matching accuracy on their own familiarity: Explaining the photo-ID paradox. Cognition 141: 161–169.

White, D.; Burton, A.M.; Jenkins, R.; Kemp, R.I. (2014a) Redesigning photo-ID to improve unfamiliar face matching performance. Journal of Experimental Psychology: Applied 20(2): 166–173.

White, D.; Kemp, R.I.; Jenkins, R.; Matheson, M.; Burton, A.M. (2014b) Passport Officers’ errors in face matching. PLoS ONE 9(8): e103510.


Dr. Kay Ritchie wears glasses on a daily basis. But is adamant that she has no secret identity…

Dr. Robin Kramer frequently collaborates with Bruce Wayne in various crime-fighting adventures but states for the record that the current research is neither funded by Wayne Enterprises nor does it represent any ulterior motives of Batman.

Check other articles from this volume