Fossil Pokémon and the foibles of Paleontology

Rodrigo B. Salvador

Museum of New Zealand Te Papa Tongarewa. Wellington, New Zealand.

Email: salvador.rodrigo.b (at) gmail (dot) com

Download PDF

Paleontology is the scientific study of life in the geologic past, which is visible to us today in the form of fossils. It studies the evolution and diversity of life throughout the entire history of our planet up to the beginning of the Holocene Epoch (roughly 12,000 years ago). That is not restricted to just naming extinct species; we can discover all sorts of stuff by analyzing the fossil record, from parental care in dinosaurs to the great extinction events that happened on our planet. I’m giving these examples because dinosaurs are the very first thing everyone thinks about when they hear the word fossil. Or almost everyone; if you’re a Pokémon trainer, you might instantly recall some of the fossil monsters in the game, most likely those from Gen I, Omanyte, Kabuto, and Aerodactyl.

From the first game in the series onwards, there are fossil Pokémon that you can find in rocks (including amber) and then revive in a Jurassic Park-esque style. The player would find such rock (for instance, a Helix Fossil) and then take it to the Pokémon Lab, where the scientists would revive it. In our example, the Helix Fossil would become an Omanyte, which is arguably the best Pokéfossil ever.[1]  Every new generation of Pokémon had new fossils, with the exception of Gen VII (Sun & Moon).

After the break in Gen VII, Gen VIII (Sword & Shield) brought the fossils back, albeit in a nightmarish form. There are four types of fossils to find in the Galar region of Pokémon Sword and Pokémon Shield: Fossilized Bird, Fossilized Drake, Fossilized Dino and Fossilized Fish. However, you do not use them straightforward to get a Pokémon; a Fossilized Bird will not grant you a cool extinct bird like Confuciusornis from the Cretaceous Period of China. Rather, you take two different fossils to a self-entitled Pokémon professor and she will mix them both to create a horrid chimera (Fig. 1).[2] The resulting Pokémon are horrid mixes that will in all likelihood have a miserable existence – just look at them, it’s almost as horrible as Nina’s story in Full Metal Alchemist.

Figure 1. The fossil Pokémon chimeras from Sword & Shield. From top to bottom: Dracozolt, Arctozolt, Dracovish, Arctovish. Artwork from the games; images retrieved from Bulbapedia (

I find it difficult to decide whether this was just some game developers running wild during character creation brainstorming sessions or if said developers knew enough about Paleontology to make a bold statement against the mistakes and the forgeries that pop up in this field every now and then. Given other biological nonsense in the series (for instance, see Tomotani, 2014; Salvador & Cavallari, 2019), I am more inclined towards the first hypothesis. Even so, I would like to explore the second one here.

Below I will delve into mistakes in fossil interpretation, from centuries-old scientific works to the present-day, and will also scrutinize the insidious fakes that people have fabricated for various reasons. But first, let us take a closer look into the fossil record.


Paleontological science is entirely dependent on the fossil record. In broad terms, a fossil is formed when a living organism dies, get buried in the sediment and, over time, becomes petrified as the sediment turns into a rock. As you can imagine, not every organism will be “lucky” enough to get buried in appropriate sediment. For instance, carcasses might get torn apart and be eaten, plants will be decomposed and “vanish”, or the weather and environmental conditions might erode and destroy an organism’s remains.

Besides, not all organisms will fossilize. If they have hard parts like bones, teeth or shells, they will more likely become fossils. Mollusk shells and shark teeth are among the most common fossils to find. However, soft-bodied organisms only fossilize when conditions are extremely favorable; think about jellyfish and squid, for example. Thus, only a small fraction of all past life got fossilized. And of that small fraction, we have only found a small portion; we haven’t searched all the rocks on the planet – there are several areas out there still to be explored.

As such, in Paleontology we work with very incomplete data. And to add insult to injury, sometimes the conditions of the fossils we find are less than optimal, which will make any research difficult. Just compare the fossils in Figure 2: one is neatly preserved, where all structures can be seen and studied; the other is a complete mess and barely recognizable as a snail.

Figure 2. Top: shell of a Vertigo land snail from the European Pliocene (33–28 Ma), showing amazing preservation (the shell measures about 1.8 mm); specimen RGM 550.111, from Naturalis Biodiversity Center. Bottom: shell of an Eoborus land snail from the Paleocene of Brazil (roughly 58–55 Ma), showing very poor preservation (the fossil measures 44 mm); specimen AMNH 24241, from the American Museum of Natural History.

Figure 2. Top: shell of a Vertigo land snail from the European Pliocene (33–28 Ma), showing amazing preservation (the shell measures about 1.8 mm); specimen RGM 550.111, from Naturalis Biodiversity Center. Bottom: shell of an Eoborus land snail from the Paleocene of Brazil (roughly 58–55 Ma), showing very poor preservation (the fossil measures 44 mm); specimen AMNH 24241, from the American Museum of Natural History.

All of this makes research in Paleontology heavily dependent on the specimens one has available. Sometimes, poorly-preserved fossils will result in erroneous interpretations. These are honest mistakes that will eventually be corrected when new fossils, new data or new tools come into play. Getting it wrong the first time around is not lame or shameful – careful re-analysis and correction of mistakes is an important way in which scientific knowledge advances. So, let us take a look in some famous examples of honest mistakes.

The reversal of Hallucigenia[3]

Hallucigenia is a genus of weird marine worm-like creatures, full of spikes and soft appendages. The first species was discovered from the Burgess Shale, a now-famous fossil deposit in British Columbia, Canada, which dates back to the Cambrian Period (roughly 508 Ma[4]). That is the time known as Cambrian Explosion, when all animal groups were rapidly[5] diversifying into all the different branches that we know today.

At first, Hallucigenia was thought to be a kind of polychaete worm, but it was later interpreted as something different. Morris (1977) proposed it was a distinct branch of the animal evolutionary tree[6], and reconstructed the animal walking on its spikes, with the soft appendages floating in the water (Fig. 3). In retrospect, it is rather silly to suppose an animal would walk on stiff legs and some researchers even pointed that out at the time (Gould, 1989), but it was the only interpretation available.

Figure 3. Morris’ reconstruction of Hallucigenia sparsa from the Burgess Shale. Image extracted from Morris (1977: text-fig. 2A). Abbreviations: An. = anus; S. = spine; St. Tt. = short tentacle; Hd. = head; Tt. = tentacle.

Only later, researchers working on Hallucigenia species from Chinese Cambrian rocks were able to figure out that the spines were protective structures on the animal’s back and that it walked with soft legs (Ramsköld & Xianguang, 1991). They basically flipped the animal. Also, those researchers proposed that Hallucigenia actually belonged to the phylum Onychophora. Nowadays, we known onychophorans as velvet worms and there are only terrestrial species remaining. The entire marine branch of this phylum (which included Hallucigenia) became extinct.

But the story did not end there. Smith & Caron (2015), working with better preserved material from the Burgess Shale, realized that what people thought it was the animal’s tail was actually its head (Fig. 4). So Hallucigenia was reversed once again, only this time rotated on a different plane. This shows how difficult it is to work with fossils when they are not well-preserved or belong to groups that are entirely extinct.

Figure 4. Artistic reconstruction of Hallucigenia sparsa. Illustration by Danielle Dufault (, extracted from Smith & Caron (2015: fig. 3f).

The terror shrimp

The Burgess Shale was the home of a myriad of weird and wonderful creatures. My personal favorite is Anomalocaris. When it was first discovered (Whiteaves, 1892), the species Anomalocaris canadensis was described based on a fossil like the one shown in Figure 5. The genus name means “anomalous shrimp”, because the fossil was deemed to be a weird sort of shrimp (it was thought to be lacking its head).

Figure 5. Anomalocaris canadensis (circa 8.5 cm long); specimen YPM 35138 from Yale Peabody Museum of Natural History. Image extracted from Wikimedia Commons (James St. John, 2014).

Well, you might be thinking “that’s a pretty lame fossil to have as favorite”, but please bear with me for a moment. Meanwhile, two other fossils were discovered in the Burgess Shale: the jellyfish Peytoia nathorsti (Fig. 6) and the sea cucumber Laggania cambria, both described in the same paper (Walcott, 1911).

Figure 6. Peytoia nathorsti (circa 5.2 x 4.2 cm); specimen YPM 5825 from Yale Peabody Museum of Natural History. Image extracted from Wikimedia Commons (James St. John, 2014).

It took several decades and new fossils (Fig. 7) for paleontologists to realize that Anomalocaris, Peytoia and Laggania were actually just parts of a single animal (Whittington & Briggs, 1985). The bit called Anomalocaris corresponds to the frontal appendages of the animal; Peytoia is the mouth; and Laggania the body.[7]  Because Anomalocaris was the oldest name (the first one described), it is the one that remains used.

Figure 7. The first complete Anomalocaris canadensis ever found; specimen from the Royal Ontario Museum. Image extracted from Wikimedia Commons (Keith Schengili-Roberts, 2007).

This is an honest mistake, even more than that of Hallucigenia above; it is still related to problems of fossil preservation, but in this case, it is an issue of only partial information (and partial fossils) being available.

Anomalocaris was then reinterpreted as the topmost predator of the Cambrian fauna. It was massive for its time, about 1 meter long, and possessed nasty-looking grasping-&-crunching appendages (Fig. 8) to deal with hard-shelled mollusks and trilobites. As a proficient hunter, Anomalocaris had dichromatic color vision and eyes composed of 16,000 lenses, rivalled only by modern dragonflies (Paterson et al., 2011; Fleming et al., 2018). They belong to a branch of the tree of life named Dinocaridida (“terror shrimps”), which is an ancestral group of phylum Arthropoda.

Figure 8. Artistic reconstruction of Anomalocaris canadensis. Image extracted from Wikimedia Commons (PaleoEquii, 2019).

Finally, if you are thinking the reconstruction from Figure 8 looks familiar, that’s because the Pokémon Anorith (Fig. 9) from Gen III is obviously an Anomalocaris.

Figure 9. The fossil Pokémon Anorith from Gen III. Artwork from the game; image retrieved from Bulbapedia (

Figure 9. The fossil Pokémon Anorith from Gen III. Artwork from the game; image retrieved from Bulbapedia (

A falsely accused dinosaur

Oviraptor is a genus of small theropod dinosaurs, of the kind that already looked very bird-like. They lived in Mongolia during the Late Cretaceous (90 to 70 Ma) and received their name means “egg seizer”. Osborn (1924) gave them such name because the fossil skull was found lying directly on top of a nest of dinosaur eggs, which “immediately put the animal under suspicion of having been overtaken by a sandstorm in the very act of robbing the dinosaur egg nest” Osborn (1924: 9). Back then, Osborn thought the eggs belonged to another dinosaur, Protoceratops andrewsi.

It took a long time for people to realize the skull belonged to a parent sitting on its nest (Barsbold et al., 1990; Norell et at., 1995; Clark et al., 1999, 2001). Contrary to the examples above, the interpretation of Oviraptor as a thief was not due to poor fossil preservation or to the fossil belonging to a completely “alien” group. This time the interpretation hinged on a thieving raptor versus a caring parent. So how could Osborn and a whole bunch of early 20th century paleontologists get it so wrong?

In short, it was an obsolete paradigm that prevented them from seeing what is now obvious to us. Back then, dinosaurs were seen as dumb cold-blooded beasts. Only in the 1960’s the so-called dinosaur renaissance began, where the paradigm started to shift.[8] A new wave of paleontologists started to understand dinosaurs as warm-blooded and active animals, with complex behavior and social structures. The work of Horner & Makela (1979), showing that Maiasaura peeblesorum cared for its young, was a complete breakthrough and changed the way we understand dinosaurs and how they are related to their present-day survivors, the birds.

Cope’s Elasmosaurus

I will only touch very lightly on this example, because it is so well-know. If you’re interested to know more, the book Dinosaur Bone War by Kimmel (2006) is a great start.

The first specimen of the giant marine reptile Elasmosaurus platyurus was described by paleontologist Edward D. Cope in 1868. When he reconstructed the skeleton, though, Cope thought the animal had a long tail and a short neck, where he obviously attached the skull. Paleontologists soon realized that the animal actually had a short tail and a very long neck and Cope’s skeleton had its head on its ass, so to speak. This caused quite a stir and Cope soon became the butt of jokes by his arch-nemesis Othniel C. Marsh. This fact kickstarted what later became known as Bone Wars.


All the examples above were honest mistakes. A series of erroneous interpretations were made, but in the end, they were identified and corrected. That’s how things work – our scientific literature is only temporary, representing the objective truth we have at a given point in time. But eventually, everything will (or at least should) be checked and corrected or refined as necessary.

Next, we will take a look at the dark side of Paleontology. These are not fossils mistakenly interpreted; rather, these are actual fakes and forgeries made for a series of typically-human reasons.

The Lügensteine

The Würzburger Lügensteinen[9] (German for Lying Stones of Würzburg) is one of the most curious stories in Paleontology, back from a time this whole scientific field was not quite yet formed. In 1725, Johann Beringer, a professor from the University of Würzburg, found several amazing fossils on a mountain near the city: lizards, frogs, arthropods, all extremely detailed and apparently well-preserved. He also found “fossils” of other stuff, like comets and letters spelling out the Tetragrammaton (the Hebrew name of the biblical god).

Do keep in mind that this was a time when the mechanisms of fossilization and evolution were not yet understood, so we should avoid judging it by our modern standards (Gould, 2000). Beringer took these fossils seriously and published a book entitled Lithographiæ Wirceburgensis in 1726, describing his finds. Beringer interpreted the animal fossils as, well, fossilized animals, and considered the other stuff as “capricious fabrications of God” (Jahn & Woolf, 1963).

It turns out the “fossils” were sculpted and planted there by two of his colleagues, Ignatz Roderick and Johann von Eckhart, who wanted to discredit Beringer. The duo started to plant fakes that were progressively more absurd, but it went on for so long that they eventually decided that the prank was getting way out of hand. They tried to convince Beringer that the fossils were fake (without implicating themselves, of course), but he dismissed them, feeling he and his work were under attack.

Because of that, Beringer took Roderick and Eckert to court to “save his honor”. The duo confessed they were the perpetrators of the hoax and wanted to discredit Beringer because “he was so arrogant and despised us all” (Jahn & Woolf, 1963). The whole deal ended up discrediting Beringer and ruining the reputations of the other two. The fossils became known as Lügensteine, or Lying Stones, and some are still around (Fig. 10).

Figure 10. Three Lügensteinen on display in the Senckenberg Naturmuseum (Frankfurt). Image extracted (and cropped) from Wikimedia Commons (MBq, 2018).

This is a story where everyone was wrong. The duo of forgers, obviously, no matter how much of an “insufferable pedant” (Gould, 2000: 21) Beringer was. And Beringer himself, who even by the scientific standards of his day, should have done a better job instead of falling prey to an easy road to fame (Gould, 2000).

But that’s all in the past, isn’t it? Paleontologists nowadays are great scientists who won’t be fooled, right? Well…

Spider-Lobster and the Invisible Hand

In 2019, a group of paleontologists described a giant spider species from the Early Cretaceous of China (Cheng et al., 2009). It was named Mongolarachne chaoyangensis (Fig. 11) and was unlike any other spider we knew about. It turns out that was due to quite an obvious reason: it was not a spider. Instead, the fossil was a crayfish with two extra legs painted on it!

Figure 11. Fossil of Mongolarachne chaoyangensis. Image extracted from Cheng et al. (2009: fig. 1).

Other paleontologists discovered the mistake and corrected it very quickly (Selden, 2019). But why would someone paint those legs to create a fake spider in the first place? According to Paul Selden, who spotted the issue, in China these fossils are “dug up by local farmers mostly, and they see what money they can get for them” (Lynch, 2019).

There is a huge market for embellished fossils and complete fake fossils out there. China, Morocco[10] and Brazil are especially infamous for this (Gould, 2000; Pickrell, 2015; Lynch, 2019). Typically, the fakes are restricted to dinosaurs and other large vertebrates, because that’s where the big money is. Most of these “fossils” end up bought by private collectors, but sometimes a “specimen” finds its way to a museum or university and becomes part of the scientific discussion (Lynch, 2019), like the “spider” above.

These forgeries are very skillfully done, often starting with fragmentary fossils and carving out the missing parts from the stone (Pickrell, 2015). So yes, even scientists can be fooled by them, just like art curators and archaeologists are every now and then fooled by “Renaissance” paintings, Van Gogh’s “Sunflowers”, or a bunch of “Dead Sea Scrolls” (Gould, 2000; Subramanian, 2018; Burk, 2020).

Because of that, several fossil species have been put in check since their description and sadly the field of Paleontology has been marred by an initial feeling of mistrust whenever a new fossil (for instance, a feathered Chinese dino-bird) is discovered (Pickerell, 2015).

In all cases above (the lying stones and the “embellished” fossils), the fakes were unknown to the scientists involved. But what about forgeries purposefully-built by a researcher? Are there any of those in Paleontology? The answer is, unfortunately, yes.

The Piltdown Man

The next example is strictly speaking paleontological, although many would argue that hominin fossils fall into a particular subset of Paleontology or even into a separate field altogether: Paleoanthropology. The following story, like Cope’s Elasmosaurus, is very well known, so I’ll just touch upon it briefly. There are several books published about the Piltdown Hoax, so if you’re interested, a quick search online will give you plenty of options.

To make a long story short, in 1912, a British amateur archaeologist named Charles Dawson claimed that he had discovered a hominin fossil in Piltdown, England, which was the “missing link” between large apes and humans. The species was named Eoanthropus dawsoni (popularly known as the Piltdown Man) and the fossils included skull fragments, a jawbone, and a canine tooth. The fossils were a forgery created by Dawson and planted on the “archaeological site” (De Groote, 2016). The jawbone and tooth belonged to an orangutan and were physically and chemically altered and prepared by Dawson. The skull fragments belonged to two humans.

Dawson and his colleagues never let other scientists analyze the actual fossils, just handing out casts of the fossils – like that was not suspicious! Only in 1953, almost 4 decades after Dawson’s death, the forgery was discovered (Weiner et al., 1953). And only in 2016 researchers were able to confirm Dawson as the forger (De Groote et al., 2016).[11]

Why did he do it? Clearly for the fame (was he expecting a knighthood, maybe?) and the attention that his “discovery” garnered – it put the UK at the forefront of Paleoanthropology, attracting interest from both scientists and the general public (De Groote, 2016).


All the new fossil Pokémon from the Galar region fall into the second category explored above, that is, of fakes and forgeries. It’s not their fault, of course. The fossils could be reconstructed properly; you’d just need two bits from the same species: two Fossilized Drake items, for instance, would result in a complete dinosaur, probably Stegosaurus-like. In fact, several fans have recreated what the actual fossil species would look like (e.g., Fig. 12; but you can find more examples online).

Figure 12. Reconstruction of the complete fossils from Galar region. Artwork by JWNutz (; used with permission.

The Pokémon “scientist” from Galar is a self-entitled expert, creating fake fossils for her own ends, just like Charles Dawson. The chimeric “species” even have spurious Pokédex entries[12], just like the “facts” about the Piltdown Man were once published in actual scientific literature. The Galarian poser “professor” is a dark stain to the honorable profession of Pokémon Professor – and of paleontologists, of course. However, she is surprisingly appropriate for our times, being well in tune with all those “Fox News experts”: flat-Earthers, climate change deniers, creationists, and anti-vaxxers. Dark times call for dark Pokémon NPCs, I suppose.


Barsbold, R.; Maryanska, T.; Osmolska, H. (1990) Oviraptorosauria. In: Weishampel, D.B.; Dodson, P.; Osmolska, H. (Eds.) The Dinosauria. University of California Press, Berkeley. Pp. 249-258.

Burke, D. (2020) How forgers fooled the Bible Museum with fake Dead Sea Scroll fragments. CNN 16/Mar/2020.

Cheng, X.; Liu, S.; Huang, W.; Liu, L.; Li, H.; Li, Y. (2019) A new species of Mongolarachnidae from the Yixian Formation of western Liaoning, China. Acta Geologica Sinica 93(1): 227–228.

Clark, J.M.; Norell, M.A.; Barsbold, R. (2001) Two new oviraptorids (Theropoda: Oviraptorosauria), Upper Cretaceous Djadokhta Formation, Ukhaa Tolgod, Mongolia. Journal of Vertebrate Paleontology 21(2): 209–213.

Clark, J.M.; Norell, M.A.; Chiappe, L.M. (1999) An oviraptorid skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, preserved in an avianlike brooding position over an oviraptorid nest. American Museum Novitates 3265: 1–36.

De Groote, I.; Flink, L.G.; Abbas, R.; Bello, S.M.; Burgia, L.; Buck, L.T.; Dean, C.; Freyne, A.; Higham, T.; Jones, C.G.; Kruszynski, R.; Lister, A.; Parfitt, S.A.; Skinner, M.M.; Shindler, K.; Stringer, C.B. (2016) New genetic and morphological evidence suggests a single hoaxer created ‘Piltdown man’. Royal Society Open Science 3(8): 160328.

Fleming, J.F.; Kristensen, R.M.; Sørensen, M.V.; Park, T.-Y.S.; Arakawa, K.; Blaxter, M.; Rebecchi, L.; Guidetti, R.; Williams, T.A.; Roberts, N.W.; Vinther, J.; Pisani, D. (2018) Molecular palaeontology illuminates the evolution of ecdysozoan vision. Proceedings of the Royal Society B 285(1892): 20182180.

Gould, S.J. (1989) Wonderful Life: The Burgess Shale and the Nature of History. W.W. Norton & Co., New York.

Gould, S.J. (1992) The reversal of Hallucigenia. Natural History 101(1): 12–20.

Gould, S.J. (2000) The Lying Stones of Marrakech. Harmony Books, New York.

Horner, J.R. & Makela, R. (1979) Nest of juveniles provides evidence of family-structure among dinosaurs. Nature 282(5736): 296–298.

Jahn, M.E. & Woolf, D.J. (1963). The lying stones of Dr. Johann Bartholomew Adam Beringer: being his Lithographiæ Wirceburgensis translated and annotated. University of California Press, Berkeley.

Kimmel, E.C. (2006) Dinosaur Bone War: Cope and Marsh’s Fossil Feud. Random House, New York.

Liptak, A. (2018) How Jurassic Park led to the modernization of dinosaur paleontology. The Verge. Available from: (Date of access: 17/Mar/2020).

Lynch, B.M. (2019) A ‘Jackalope’ of an ancient spider fossil deemed a hoax, unmasked as a crayfish. University of Kansas. Available from (Date of access: 18/Mar/2020).

Morris, S.C. (1977) A new metazoan from the Cambrian Burgess Shale of British Columbia. Palaeontology 20: 623–640.

Norell, M.A.; Clark, J.M.; Chiappe, L.M.; Dashzeveg, D. (1995) A nesting dinosaur. Nature 378: 774– 776.

Osborn, H.F. (1924) Three new Theropoda, Protoceratops zone, central Mongolia. American Museum Novitates 144: 1–12.

Paterson, J.R.; García-Bellido, D.C.; Lee, M.S.; Brock, G.A.; Jago, J.B.; Edgecombe, G.D. (2011). Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480(7376): 237–240.

Pickerell, J. (2015) The great dinosaur fossil hoax. Cosmos 27/Jul/2015.

Ramsköld, L. & Xianguang, H. (1991) New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature 351(6323): 225–228.

Russell, M. (2013) The Piltdown Man Hoax: Case Closed. The History Press, Cheltenham.

Salvador, R.B. (2014) Praise Helix! Journal of Geek Studies 1(1–2): 9–12.

Salvador, R.B. & Cavallari, D.C. (2019) Pokémollusca: the mollusk-inspired Pokémon. Journal of Geek Studies 6(1): 55–75.

Selden, P.A.; Olcott, A.N.; Downen, M.R.; Ren, D.; Shih, C.; Cheng, X. (2019) The supposed giant spider Mongolarachne chaoyangensis, from the Cretaceous Yixian Formation of China, is a crayfish. Palaeoentomology 2(5): 515–522.

Smith, M. & Caron, J. (2015) Hallucigenia’s head and the pharyngeal armature of early ecdysozoans. Nature 523: 75–78.

Subramanian, S. (2018) How to spot a perfect fake: the world’s top art forgery detective. The Guardian 15/Jun/2018.

Thomas, H.N. (2020) A paleontological outlook on the Super Mario Bros. movie. Journal of Geek Studies 7(1): 1–6.

Tomotani, B.M. (2014) Robins, robins, robins. Journal of Geek Studies 1(1–2): 13–15.

Walcott, C.D. (1911) Cambrian geology and paleontology II. No. 3. – Middle Cambrian holothurians and medusæ. Smithsonian miscellaneous collections 57 [1914]: 41–68.

Walsh, E.J. (1996) Unraveling Piltdown: The Science Fraud of the Century and its Solution. Random House, New York.

Weiner, J.S.; Oakley, K.P.; Clark, W.G. (1953) The solution of the Piltdown problem. Bulletin of the British Museum, Geology 2(3): 139–146.

Whiteaves, J.F. (1892) Description of a new genus and species of phyllocarid Crustacea from the Middle Cambrian of Mount Stephen, B.C. Canadian Record of Science, 5, 205–208.

Whittington, H.B. & Briggs, D.E. (1985) The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society B 309 1141): 569–609.


Many thanks to my paleo-colleagues Alan Tennyson and Felix Marx for pointing out some examples and references I had overlooked; and to Jean-Claude Stahl for the beautiful photo of Vertigo.


Dr. Rodrigo Salvador is a paleontologist who studies snails, although he has dabbled a little in dinos and fossil birbs too. His long-time favorite Pokéfossil is none other than Lord Helix, despite the anatomical flaws in comparison with real ammonoids. Rodrigo was eager for the new fossils in Sword & Shield but ended up massively disappointed. On the bright side, at least the new horrible Pokéfossils served as a backdrop and excuse to write this article.

[1] And the only one to ascend to godhood. Read the story of Lord Helix in the article by Salvador (2014).

[2] A Fossilized Bird plus a Fossilized Drake will give you Dracozolt; Bird + Dino = Arctozolt; Fish + Drake = Dracovish; Fish + Dino = Arctovish.

[3] Yes, I borrowed the title from Steve Gould (1992).

[4] Ma = megaannum, or millions of years.

[5] Rapidly in geological terms, of course. What are 15 to 25 millions of years for a planet that is 4.5 billions of years old?

[6] He was also the one who named it Hallucigenia, because it is such a weird-looking beast.

[7] Actually the mouthpart of Anomalocaris is different an the fossil known as Peytoia belongs to a second species of anomalocaridid.

[8] This renaissance ultimately led to a shift in how the public perceived dinosaurs too, largely due to the film version of Jurassic Park (Litpak, 2018; Thomas, 2020).

[9] Also known as Beringersche Lügensteine, or Beringer’s Lying Stones, after their infamous “discoverer”.

[10] See Gould’s 2000 book The Lying Stones of Marrakech for an essay linking the big forgery industry of Morocco with Beringer’s Lying Stones.

[11] The Piltdown Man was not Dawson’s only forgery, though; he has tens of others on his portfolio (Walsh, 1996; Russel, 2013).

[12] Granted, several other Pokédex entries seem to have been written by an 8-year-old child. Just look for Ponyta’s, Alakazam’s and Magcargo’s entries, for instance.

A paleontological outlook on the Super Mario Bros. movie

Henry N. Thomas

University of California, Berkeley, USA.

Email: h.thomas (at) berkeley (dot) edu

Download PDF

Among the many unique choices made while making the 1993 movie Super Mario Bros. was the large focus on dinosaurs. Much of the movie takes place in Dinohattan, an alternate New York in a universe where humans evolved from dinosaurs instead of mammals. This was undoubtedly inspired by various reptilian species within the Mario games. That dinosaurs were extremely popular in the 90’s certainly helped. New discoveries from the Dinosaur Renaissance of the 70’s and 80’s inspired new dinosaur media such as The Land Before Time, Jurassic Park, and of course, Super Mario Bros. Jurassic Park in particular ushered in a huge wave of dinosaur media, with many since bearing at least one reference to the film. Super Mario Bros. was the last major piece of dinosaur media to be released before the Jurassic Park wave, predating that film’s release by only a few weeks.


The movie’s infamous introduction details the extinction of the non-avian dinosaurs via meteorite impact. At the time we knew a meteorite was to blame, thanks to iridium. Iridium is an element very rare on earth, but common in asteroids, and there’s a global layer of iridium in the rock record right at the boundary between the Cretaceous and the Paleogene (Alvarez et al., 1980). This even got a shout-out in Super Mario Bros. In the early 90’s, the location of the impact site wasn’t certain – but we would soon find out it wasn’t Brooklyn (Fig. 1). The Chicxulub crater, buried underneath Mexico’s Yucatan Peninsula, has been dated to just under 66 million years ago – right at the K-Pg boundary (Hildebrand et al., 1991). This crater is estimated to be 150 km wide and 20 km deep, created by an impactor roughly the size of Mount Everest. It would have obliterated everything within the vicinity in a fraction of a second, leaving nothing behind to fossilize.

Figure 1: Brooklyn 65 million years ago, according to Super Mario Bros. It didn’t look like this in real life – at the time, the area that is now New York City was at the bottom of the Atlantic Ocean.

The notion of digging up tyrannosaurs in Brooklyn is also doubtful. Long Island is very recent geologically, being formed by glaciers during the last Ice Age – the same glaciers that ground away most of New York state’s Cretaceous rocks (Charles Marshall, pers. comm.). But we can make inferences about what lived there based on fossils found in nearby states like New Jersey. During the Cretaceous, there was an inland seaway that split North America into two continents, Laurentia in the west and Appalachia in the east. The two continents had different faunas – Appalachia didn’t have any of the famous Late Cretaceous dinosaurs Laurentia did. At the end of the Cretaceous, New York state would have been on the coast of a much narrower Atlantic Ocean, and the city was underwater.

Dinosaurs that lived on the eastern seaboard included ostrich-like ornithomimids (Brownstein, 2017), armored nodosaurids (Burns, 2016), duckbilled hadrosaurs (Prieto-Marquez et al., 2006), and Dryptosaurus. Dryptosaurus (Fig. 2) was a relative of Tyrannosaurus, around half the size but leaner and with larger arms (Brusatte et al., 2011). If T. rex was a tiger, Dryptosaurus would have been a leopard. In the skies flew early seabirds (Weishampel et al., 2004), and out at sea lived a variety of marine reptiles, such as sea turtles and plesiosaurs. The most famous marine reptiles, however, would be mosasaurs – large ocean-going lizards whose limbs had evolved into dolphin-like flippers. These ranged in size from the three-meter long Halisaurus to the fifteen-meter long Mosasaurus (Gallagher, 2005). Although the fossils Daisy finds may not line up with real life, Anthony Scapelli’s interference with the dig is unnervingly close to reality, as many field paleontologists will tell you.

Figure 2: A life-sized model of Dryptosaurus, built by Tyler Keillor and on display at the Dunn Museum in Libertyville, Illinois.


Jurassic Park closely followed the science of the time, bringing an updated image of dinosaurs to the public. Heavily inspired by the Dinosaur Renaissance, and the growing body of evidence that birds are a clade of dinosaurs, that movie’s dinosaurs were energetic, warm-blooded, awe-inspiring, dangerous, and in some cases intelligent. As the previous public perception of dinosaurs was that of slow, lumbering, cold-blooded evolutionary failures, this brought a paradigm shift in popular culture, and a renewed interest in the science of paleontology (Liptak, 2018). Super Mario Bros. was not part of this paradigm shift. It’s clear the filmmakers were still in the mindset that dinosaurs were cold-blooded and reptilian. The Goombas (Fig. 3) – de-evolved Dinohattanites – are dumb and lumbering. They resemble the synapsid Cotylorhynchus (Fig. 4) more than any actual dinosaur. Yoshi (Fig. 3) is a little more active, but he’s still highly caricaturized and clearly a relic from the 80’s, paleontologically speaking. Not to mention, many dinosaurs are now known to have had feathers alongside or instead of scales (e.g., Godefroit et al., 2014), and it’s likely that ancestrally, all dinosaurs had feathers of some sort, and only larger forms lost theirs (Yang et al., 2019).

Figure 3: Some of the dinosaurian residents of Dinohattan: Daisy, a normal dinosaur-descended relative of Dinohattan (upper left); Yoshi, a more dinosaur-y dinosaur (upper right); and a Goomba, a de-evolved Dinohattanite (below). None of these closely resemble real dinosaurs, and suffice it to say, they don’t resemble their video game counterparts either.

Figure 4: Cotylorhynchus. Despite how it may look, this is a very early relative of mammals. By sheer coincidence, it happens to resemble Super Mario Bros.’ Goombas. Restoration by Dmitry Bogdanov.

President Koopa – who proudly brags about being descended from Tyrannosaurus rex – shows reptilian features such as a long, forked, flicking tongue and (sometimes) slit-like eyes. Both of these are common in living squamates (lizards and snakes), but not dinosaurs. Squamates that flick their tongues use it to gather scent particles, which is then processed by an organ in the roof of the mouth, called the Jacobson’s organ. No dinosaurs had this organ (Naish, 2016). Many dinosaurs had immobile tongues, like alligators, or non-forked birdlike tongues (Li et al., 2018). The way a vertical pupil scatters light is good for predators that have their heads low to the ground – up to about the height of a cat’s head (Banks et al., 2015). The vast majority of dinosaurs probably had round pupils like those of birds.


Super Mario Bros. was not the first nor the last project to speculate on what might have happened had the dinosaurs not all been destroyed. Perhaps the two cornerstone works on this topic are Dougal Dixon’s The New Dinosaurs and the collaborative online Speculative Dinosaur Project, both of which detail creatures that could have evolved 65 million years after an asteroid impact that never happened. Indeed, Super Mario Bros. wasn’t even the first to feature dinosaurs evolving into intelligent (…to a degree) life. The first to pose the question was none other than Carl Sagan, inspired by then-new research on the brain size of a family of dinosaurs called troodontids (Sagan, 1977). These dinosaurs, including the likes of Stenonychosaurus (Fig. 5) and Saurornithoides, were small-to-medium-sized omnivores with a very large brain relative to body size. In these ways they’re a lot like the ancestors of humans, and thus are good candidate for evolving into sapient beings. Paleontologist Dale Russell took this a step further in 1982, with the “dinosauroid” – a human-shaped descendant of Stenonychosaurus (Russell & Séguin, 1982). He even commissioned a life-sized model (Fig. 5), which looks a bit more like an alien than a dinosaur. The dinosauroid isn’t human to the same degree as the residents of Dinohattan, but it may have provided some inspiration for the filmmakers.

Figure 5: Dale Russell’s Dinosauroid statue, next to a contemporary reconstruction of Stenonychosaurus. Compare and contrast to the residents of Dinohattan.

The film’s idea of evolution has also not exactly held up. “You may think of evolution as an upward process,” muses President Koopa right before he de-evolves Toad into a Goomba. It isn’t. Evolution isn’t about levels, with “basic” life progressively evolving towards a more advanced endpoint. Dale Russell certainly thought it was, which is why the dinosauroid looks so human-like (Darren Naish, pers. comm.). But evolution isn’t a constant progression towards a form that’s intrinsically “more advanced”. An entire rundown of the theory of evolution is out of the scope of this paper, but in short, it is simply change over time (Darwin, 1859). This is often in response to environmental change, where features that help the organism better survive and reproduce are selected for (but sometimes things evolve solely because they help the organism reproduce, for example the tail of the peacock). If a certain set of features works, there may not be reason to change much. Fossil horseshoe crabs and lungfish dating to the Jurassic are effectively identical to those around today, for example.

The “linear” idea of evolution forms the basis of Super Mario Bros.’ de-evolution. De-evolution isn’t a thing. Evolution acts with no foreknowledge or back-knowledge. An organism can theoretically evolve to superficially resemble one of its ancestors, but the mechanism behind this is no different than it evolving into something that looks completely different. This is a principle called Dollo’s Law – an organism can never return exactly to the evolutionary state its ancestors had (Gould, 1970). You can’t de-evolve something to what it’d be like in the Cretaceous. And since evolution acts on populations, not individuals (Darwin, 1859), the notion of de-evolving someone in particular is impossible.


Between the movie’s bombing among critics and audiences upon release and Jurassic Park being released a few weeks later, Super Mario Bros. never got an opportunity to leave a mark upon dinosaur media. It does leave a legacy technologically, though: the digital visual effects techniques, many of which were invented for the film, have since become industry standards, and the Yoshi animatronics set a standard for later dinosaur movies to live up to (they even impressed the producers of Jurassic Park). Super Mario Bros. was also the beginning of John Leguizamo’s inexplicable connection to prehistoric life – he would later lend his voice to the Ice Age franchise and the movie adaptation of Walking with Dinosaurs in 2013. And it left us with a few choice words of wisdom: trust the fungus.


I would like to thank Luigi Gaskell, Matthew Mitchell, and the Super Mario Bros. Movie Archive for their encouragement in writing this manuscript, and I give the latter permission to include this article on their website.


Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448): 1095–1108.

Banks, M.S.; Sprague, W.W.; Schmoll, J.; Parnell, J.A.Q.; Love, G.D. (2015) Why do animal eyes have pupils of different shapes? Science Advances 1(7): e1500391.

Brownstein, C.D. (2017) Theropod specimens from the Navesink Formation and their implications for the diversity and biogeography of ornithomimosaurs and tyrannosauroids on Appalachia. PeerJ Preprints 5: e3105v1.

Brusatte, S.L.; Benson, R.B.J.; Norell, M.A. (2011) The anatomy of Dryptosaurus aquilunguis (Dinosauria: Theropoda) and a review of its tyrannosauroid affinities. American Museum Novitates 3717: 1–53.

Burns, M.E. (2016). New Appalachian armored dinosaur material (Nodosauridae, Ankylosauria) from the Maastrichtian Ripley Formation of Alabama. Geological Society of America Abstracts with Programs 48(3).

Darwin, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.

Gallagher, W.B. (2005) Recent mosasaur discoveries from New Jersey and Delaware, USA: stratigraphy, taxonomy and implications for mosasaur extinction. Netherlands Journal of Geosciences 84(3): 241–245.

Godefroit, P.; Sinitsa, S.M.; Dhouailly, D.; Bolotsky, Y.L.; Sizov, A.V.; McNamara, M.E.; Benton, M.J.; Spagna, P. (2014) A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345(6195): 451–455.

Gould, S.J. (1970) Dollo on Dollo’s law: irreversibility and the status of evolutionary laws. Journal of the History of Biology 3(2): 189–212.

Hildebrand, A.R.; Penfield, G.T.; Kring, D.A.; Pilkington, M.; Camargo Z., A.; Jacobsen, S.B.; Boynton, W.V. (1991) Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19(9): 867–871.

Li, Z.; Zhou, Z.; Clarke, J.A. (2018) Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs. PLoS ONE 13(6): e0198078.

Liptak, A. (2018) How Jurassic Park led to the modernization of dinosaur paleontology. The Verge. Available from: (Date of access: 31/Jan/2020).

Naish, D. (2016) The ridiculous nasal anatomy of giant horned dinosaurs. Tetrapod Zoology. Available from: (Date of access: 31/Jan/2020).

Ostrom, J.H. (1969) Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Peabody Museum of Natural History Bulletin 30: 1–165.

Prieto-Marquez, A.; Weishampel, D.B.; Horner, J.R. (2006) The dinosaur Hadrosaurus foulkii, from the Campanian of the East Coast of North America, with a reevaluation of the genus. Acta Palaeontologica Polonica 51(1): 77–98.

Russell, D.A. & Seguin, R. (1982) Reconstruction of the small Cretaceous theropod Stenonychosaurus inequalis and a hypothetical dinosauroid. Syllogeus 37: 1–43.

Sagan, C. (1977) The Dragons of Eden: Speculations on the Evolution of Human Intelligence. Random House, New York.

Weishampel, D.B.; Barrett, P.M.; Coria, R.A.; Le Loeuff, J.; Xu, X.; Zhao, X.; Sahni, A.; Gomani, E.M.P.; Noto, C.R. (2004) Dinosaur distribution. In: Weishampel, D.B.; Dodson, P.; Osmólska, H. (Eds.) The Dinosauria, Second Edition. University of California Press, Berkeley. Pp. 517–606.

Yang, Z.; Jiang, B.; McNamara, M.E.; Kearns, S.L.; Pittman, M.; Kaye, T.G.; Orr, P.J.; Xu, X.; Benton, M.J. (2019) Pterosaur integumentary structures with complex feather-like branching. Nature Ecology & Evolution 3: 24–30.


Henry Thomas is a paleontology student at the University of California, Berkeley. His main research interest is pterosaurs, which the Super Mario Bros. movie unfortunately lacks.

Moa v Superman

Rodrigo B. Salvador

Museum of New Zealand Te Papa Tongarewa. Wellington, New Zealand.

Email: salvador.rodrigo.b (at) gmail (dot) com

Download PDF

During his heroic career Superman fought several foes. Some of these stories are truly memorable, like The Death of Superman (1992–1993), when he faced Doomsday. But many stories just ended up completely forgotten. Granted, there are some stories that most fans prefer to forget, like the film Batman v Superman: Dawn of Justice (2016), but some are curious or weird enough to eventually deserve a fresh look. The story I’m about to tell you is one of the latter kind.

This one happened during the first years of the so-called Bronze Age of Comics (1970–1985). Comic books from the Bronze Age retained lots of elements and conventions from the preceding Silver Age, but started to introduce stories more in tune with social issues, like racism and drugs. Likewise, comics also began including environmental issues and this is the topic I will focus on here. More specifically, on extinction.


It is the first story on Action Comics no. 425 (July 1973), written by Cary Bates, illustrated by Curt Swan and Frank Giacoia. It is called “The Last Moa on Earth!” and by the title alone, you can see it is about a giant extinct bird.

It’s a Bird… It’s a Plane… It’s Super– no, wait, it is actually a bird this time!

My goal here is to guide you through the story and offer some Biology inputs every now and then, explaining some things and “correcting” the bits the comics got wrong. I do know that writers should be free to invent and I wholeheartedly agree with that – it is science fiction after all! However, there are some sciency bits and pieces that are so simple to get right that there can be no excuse for giving the public wrong information.

The story starts off with hunter Jon Halaway in a New Zealand forest, being attacked by a giant flightless bird. He shoots and kills it, and decides to visit a local scientist (in Hawera, a town on the west coast of the North Island) to confirm his suspicions of the bird’s identity.

Elementary, my dear Halaway.

The scientist tells Halaway that he shot a bird thought to be extinct for 500 years and that there were once thousands of these animals in New Zealand. Both pieces of information are correct. Scientists estimated that there were circa 160,000 moa in New Zealand when Polynesian settlers arrived between 1,200 and 1,300 CE (Holdaway & Jacomb, 2000; Wilmshurst et al., 2010). There were nine species of moa in total and the Polynesians (who later became known as the Māori) had already extinguished them all by the early 1,400’s CE (Tennyson & Martinson, 2007; Perry et al., 2014).

The scientist then says that the bird was the largest of the moa species, Dinornis[1] maximus. While indeed this species was likely the largest[2], it inhabited only the South Island of New Zealand. The species from the North Island, where Halaway was hunting, is called Dinornis novaezealandiae. So the writer got the species wrong, but we cannot truly blame him: tens of moa “species” were described throughout the years, mostly because of the huge difference in size between the sexes of some species confused early researchers. Thus, the classification of moa species was really messed up until genetic studies started to be conducted from the late 1990’s onwards.

The skull of a North Island giant moa, Dinornis novaezealandiae. Source: Museum of New Zealand Te Papa Tongarewa (specimen MNZ S.242); ©Te Papa, all rights reserved.

On a similar note, D. maximus is actually an invalid name; the valid name for the South Island giant moa is D. robustus (Gill et al., 2010). That is because “D. maximus” was a second name given to describe the same species; to avoid confusion, only the first name ever used (D. robustus) is valid in these cases.

Halaway estimated the size of the slain moa at 12 feet (approximately 3.6 m), which is quite reasonable. The largest known specimens would have been 2 meters high at their backs or 3 meters high with their necks held straight up (something that they did not do; Tennyson & Martinson, 2007). Moreover, Halaway’s dead bird was a female, which are typically much larger than males in the two Dinornis species (Bunce et al., 2003; Tennyson & Martinson, 2007).

Box 1. What’s a moa anyway?

The moa belong to a group of birds called “ratites”, which also includes ostriches, emus, cassowaries, kiwi, rheas, and the extinct elephant birds. Recent research has shown that moa are not closely related to the other notable New Zealand ratites, the kiwi. Rather, they are closer to the charismatic South America tinamous[3] (Mitchell et al., 2014; Yonezawa et al., 2017). Since tinamous still retain some ability to fly, the moa’s ancestor was actually a flying bird (Gibbs, 2016).

The elegant crested tinamou, Eudromia elegans. Source: Wikimedia Commons (Evanphoto, 2009).

The loss of flight (alongside attaining a large body size) is a common occurrence on island environments where no mammalian predator is present. Other New Zealand species have also lost this ability; besides the kiwi (the typical example of a flightless bird), there are parrots (kakapo), rails (takahē) and wrens.



Halaway realizes that what he did was plain wrong. As mentioned above, during the Bronze Age comics became conscious of social and environmental problems – and extinction is a major problem, since it is usually our fault. This is important because, even though more than 350 years have elapsed after the last dodo was killed, most people still do not really grasp the idea that a species can disappear forever (Adams & Carwardine, 1900).

The “good” Mr. Halaway than devoted all his energy and resources into finding the slain moa’s egg. He succeeds and notes that the egg was being incubated in a hot spring with “strange fumes”. The egg was really big and appear egg-shaped in one panel and spherical in the other. Moa’s eggs were not spherical and not that large. Nevertheless, they were quite big and the largest known intact eggs are 20 and 25 cm tall (respectively, for the North Island and South Island Dinornis).

Of course the strange chemicals will grant the baby moa superpowers; otherwise this wouldn’t be a comic book.

Halaway finally arrives in Metropolis, where he is interviewed by none other than Clark Kent. On the highway, Halaway tells Clark that he wants to redeem himself of his “unforgivable deed” and hope that scientists will figure a way to use the egg to produce more moa. The repented hunter then faints, just as the baby moa hatches and escapes, throwing the car off-balance and into a river.

Clark takes off his suit and glasses and, after he’s more comfortable in his supersuit, saves Halaway and takes him to a hospital. Now I will cut the whole weird plot short and just say that the moa created an “organic link” (whatever that is) with Halaway via a microorganism, and was draining his energy. Typical crazy comic book stuff, but that’s not the point here. So let’s get back to the baby moa.

These “clawed terrors” were actually fluffy herbivores.


Superman starts searching Metropolis for the runaway moa and eventually finds it flying. Yes, flying – without wings, the comic-book moa flies by “thrashing its feet at super-speed”. In fact, Superman notices that the moa can fly faster than a super-sonic jet.

Also, even though just a few hours had passed since the moa escaped, when Superman found it, the bird had already doubled in size. And these were not the only superpowers granted to the moa by the mysterious fumes.

Yep, you read it right – that moa is flying with its feet.

Box 2. The moa’s archnemesis

The moa were herbivores, browsing on several types of leafy herbs, shrubs and trees (Wood et al., 2008). They were so abundant that it is thought their presence in New Zealand resulted in the evolution of a set of counter-measures in some plant lineages, which have small and hardened leaves, and sometimes also spines (Greenwood & Atkinson, 1977; Cooper et al., 1993; Worthy & Holdaway, 2002). But who ate the moa? Well, they were were so large that one would think they had no natural predators before the hungry Polynesians arrived. But that would be wrong – moa were hunted by giant eagles.

Naturally one would think of this – it is New Zealand after all! Source: The Hobbit: An Unexpected Journey (Warner Bros. Pictures, 2012), screen capture.

They are known as Haast’s eagles, after the naturalist who first described them, Sir Johann von Haast. They are the largest known true raptors, in both size and weight. They could reach a 2.6 m wingspan (somewhat smallish for their bulk) and 16 kg in weight, with females being larger (Brathwaite, 1992; Tennyson & Martinson, 2007). To hunt and eat their massive prey, Haast’s eagles had strong legs and feet, with huge claws. Unfortunately, these amazing birds could not survive after the moa became extinct and likely did not last much longer than 1,400 CE (Tennyson & Martinson, 2007).

The skull of a Haast’s eagle, Aquila moorei. Source: Museum of New Zealand Te Papa Tongarewa (specimen MNZ S. 22473); ©Te Papa, all rights reserved.


The moa also gained the ability to use its feathers as projectiles that could even pierce an elephant’s hide (according to Superman). Needless to say, birds cannot do that unless they are also Pokémon. Finally, the moa could instantly regrow lost limbs, a feat that few heroes (and absolutely no birds) can achieve.

Giant Moa uses Feather Barrage. It’s not very effective…
Holy regeneration, Batman!

After some more fighting, Superman understands that the bird just wants to go back home – to that place with the fumes and the lonely pink flower. Superman realizes that the flower is a “Quixa blossom”, as he calls it, and says it is a rare plant found only in northwest New Zealand.

Since my knowledge of plants is fairly limited, I asked a New Zealand botanist for help with this one. I was told that there is no flower with that name in the country and actually nothing that even remotely looks like it.

The “Quixa blossom” is actually the least believable thing in this whole story.

In any event, Superman finds the moa’s home and takes it back there, thus stopping the energy draining effect and saving Halaway. Superman then proclaims the area a “moa preserve” and sets up a fence around it. A thoughtful move, but one that completely overlooks the fact that the supermoa could fly.


The story ends with Halaway saying that “the world owns the moa another chance for survival”. Unfortunately, reality is not so kind: our species has wiped the moa off the face of the Earth and there is no second chance.

Overall, if you ignore the superpowers and the “organic link” stuff, this Superman story is actually a nice portrayal of an extinct species and its tragic fate on the hands of humankind. If nothing else, I hope it has inspired a reader somewhere to become a scientist or to fight to preserve other endangered animals.


Adams, D. & Carwardine, M. (1990) Last Chance to See. William Heinemann, London.

Brathwaite, D.H. (1992) Notes on the weight, flying ability, habitat, and prey of Haast’s Eagle (Harpagornis moorei). Notornis 39: 239–247.

Bunce, M.; Worthy, T.H.; Ford, T.; Hoppitt, W.; Willerslev, E.; et al. (2003) Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425: 172–175.

Cooper, A.; Atkinson, I.A.E.; Lee, W.G.; Worthy, T.H. (1993) Evolution of the moa and their effect on the New Zealand flora. Trends in Ecology & Evolution 8: 433–437.

Mitchell, K.J.; Llamas, B.; Soubrier, J.; Rawlence, N.J.; Worthy, T.H.; et al. (2014) Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 344: 898–900.

Gibbs, G. (2016) Ghosts of Gondwana: The History of Life in New Zealand. Fully Revised Edition. Potton & Burton, Nelson.

Gill, B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; et al. (2010) Checklist of the Birds of New Zealand, Norfolk and Macquairie Islands, and the Ross Dependency, Antarctica. Te Papa Press, Wellington.

Greenwood, R.M. & Atkinson, I.A.E. (1977) Evolution of divaricating plants in New Zealand in relation to moa browsing. Proceedings of the New Zealand Ecological Society 24: 21–33.

Holdaway, R.N. & Jacomb, C. (2000) Rapid extinction of the moas (Aves: Dinornithiformis): model, test, and implications. Science 287: 2250–2254.

Perry, G.L.W.; Wheeler, A.B.; Wood, J.R.; Wilmshurst, J.M. (2014) A high-precision chronology for the rapid extinction of New Zealand moa (Aves, Dinornithiformes). Quaternary Science Reviews 105: 126–135.

Tennyson, A. & Martinson, P. (2007) Extinct Birds of New Zealand. Te Papa Press, Wellington.

Wilmshurst, J.M.; Hunt, T.L.; Lipo, C.P.; Anderson, A.J. (2011) High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. PNAS 108(5): 1815–1820.

Worthy, T.H. & Holdaway, R.N. (2002) The Lost World of the Moa: Prehistoric Life of New Zealand. Canterbury University, Christchurch.

Wood, J.R.; Rawlence, N.J.; Rogers, G.M.; Austin, J.J.; Worthy, T.H.; Cooper, A. (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quaternary Science Reviews 27: 2593–2602.

Yonezawa, T.; Segawa, T.; Mori, H.; Campos, P.F.; Hongoh, Y.; et al. (2017) Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Current Biology 27: 68–77. 


I am very grateful to Dr. Carlos Lehnebach for the help with flower, to Alan Tennyson for helping me to correct some mistakes on moa/eagle biology, and to Museum of New Zealand Te Papa Tongarewa for allowing the usage of the photographs herein.


Dr. Rodrigo Salvador is a paleontologist/ zoologist who studies mollusks, but just happens to have a soft spot for giant flightless birds. He is a diehard DC Comics fan, but to be honest, he never really liked Superman. Instead, he prefers to read the stories of the caped crusader and his extensive Gotham “family”.

[1] Dinornis means “terrible bird”, just like dinosaur means “terrible lizard”.

[2] The largest tibia (a leg bone) ever found belongs to this species, being 1 m long (Tennyson & Martinson, 2007).

[3] Tinamous are not typically included in the ratites group, rather being historically considered a separate (basal) lineage and grouped together with ratites in the more inclusive “palaeognaths” group. However, the work of Mitchell and collaborators (2014) have placed the tinamous well inside the ratites.

Check other articles from this volume


One squid to rule them all

Rodrigo B. Salvador

Museum of New Zealand Te Papa Tongarewa. Wellington, New Zealand.

Email: salvador.rodrigo.b (at) gmail (dot) com

Download PDF

When it was released in 2014, Middle-earth: Shadow of Mordor (Warner Bros. Interactive Entertainment) proved to be the game all Tolkien fans had been waiting for. Its sequel, Middle-earth: Shadow of War, released in 2017, improved and expanded the first game. Besides all the orc-slaying action, the game has a bunch of other activities, including the most staple of gaming side quests: collectibles.

Simply put, collectibles are items scattered throughout the game and completionist gamers go crazy hunting them. In most games, collectibles do very little or even nothing at all, but in Shadow of War, they reveal little tidbits of the game’s lore. When dealing with any Tolkien-related story, we fans are always happy to have more information about the setting and this makes the collectibles in Shadow of War rather enjoyable.

One of these collectibles, a fossilized squid’s beak, immediately and inevitably caught my attention. Since this fossil deserves more time in the spotlight than what it got in the game, I have devoted this article to analyze it more thoroughly.


The fossil in Shadow of War can be found in Mordor and it represents a squid’s beak (Fig. 1). In the game, the item is called “Kraken Beak Fossil” and is accompanied by the following comment by Idril, the non-player character responsible for the treasury of the Gondorian city Minas Ithil: “Our patrols found this fossilized squid beak years ago. If it is proportional to the smaller squids that fishermen sometimes catch, the sea creature would be several hundred feet long.

Figure 1. The fossilized squid beak found in Middle-earth: Shadow of War. Credit: Monolith Productions / Warner Bros. Interactive Entertainment; screenshot from the game.

The item is named a “Kraken beak” in allusion to the well-known fact that real-life giant squids were the origin of the Kraken myth (Salvador & Tomotani, 2014). So the characters in the game recognize they are dealing with a “giant version” of their common squids. But what exactly is a squid’s beak? And can fossil beaks really be found in our planet’s rocks? To answer these questions, we will need a little primer in squid biology.


Squids are animals belonging to the Phylum Mollusca, the mollusks, and more specifically to the Class Cephalopoda. Cephalopods are very diverse creatures and the group includes not only squids but also octopuses, cuttlefish, nautiluses and two completely extinct lineages: the belemnites and the ammonoids. Cephalopods live in seas worldwide (from the surface to 5,000 m deep) and are represented by over 800 living species; the fossil record, on the other hand, counts with 17,000 species (Boyle & Rodhouse, 2005; Rosenberg, 2014).

The first cephalopods appeared over 450 million years ago during the late Cambrian (Boyle & Rodhouse, 2005; Nishiguchi & Mapes, 2008). They achieved an astounding diversity of species during the Paleozoic and Mesozoic eras, but some lineages (ammonoids and belemnites) are now extinct (Monks & Palmer, 2002). Today, we have two distinct groups of cephalopods: the nautiluses, a relict group with just a handful of species, and the neocoleoids, a latecomer group that appeared during the Mesozoic and includes cuttlefish, octopuses, and squids (Boyle & Rodhouse, 2005; Nishiguchi & Mapes, 2008).

Squids are soft-bodied animals and their body is divided into three parts (Fig. 2): (1) the mantle, where most organs are located; (2) the head, where the eyes, brain, and mouth are located; and (3) the eight arms and two tentacles (the latter usually look different from the arms and can be much longer).

Figure 2. Diagram of a squid, with the names of their body parts. Credit: Barbara M. Tomotani; image modified from Salvador & Tomotani (2014: fig. 7).

The mouth of the squid is on the center of the circle formed by the arms. It contains a pair of chitinous mandibles, which together are called a “beak” because of their resemblance to a bird’s beak (Fig. 3). Squids hold their prey with their arms, draw it towards the mouth, and take small bites off it using the beak. The beak and mandibles move by muscular action – they are connected by jaw muscles within a globular organ called “buccal mass” (Nixon, 1988; Tanabe & Fukuda, 1999).

Figure 3. Example of a squid: a (dead) specimen of Doryteuthis sanpaulensis (Brakoniecki, 1984). Top: whole animal. Bottom left: mouth region (in the center of the ring of arms). Bottom right (upper inset): close-up of the mouth; the beak is barely visible. Bottom right (bottom insets): beak (removed from the specimen) in frontal and lateral views. The specimen is deposited in the scientific collection of the Museu de Zoologia da Universidade de São Paulo (São Paulo, Brazil) under the record number MZSP 86430. Photos by Carlo M. Cunha; image reproduced from Salvador & Cunha (2016: fig. 6).

Usually, the only parts of an animal to become fossils are the mineralized (and thus hard) skeletal structures, such as bone, teeth, and shells. Squids are almost completely soft-tissue animals and so are only preserved in the fossil record in exceptional circumstances. The beak of a squid is not mineralized; rather, it is composed only of organic compounds such as chitin (the same substance found on insects’ exoskeleton) and proteins (Miserez et al., 2008). Nevertheless, the beak is reasonably tough and thus, it can become a fossil under the right circumstances. Indeed, several fossil squids (and neocoleoids in general) are known only from their beaks (Tanabe, 2012; Tanabe et al., 2015; Fig. 4) or their internal vestigial shell[1].

Therefore, it is plausible that a fossil beak of a squid could be found in Mordorian rocks. It could be argued that the fossil presented in the game is not morphologically accurate, especially the frontal part of the beak, which seems to be a single piece instead of two (Fig. 1), but we can disregard this here and accept the Mordorian fossil for what the game says it is: the remains of a squid that lived long ago. The game’s description of the fossil implies that the animal would be huge – but how can we know the size of the animal only from its beak? And how big can a squid get anyway? I will try to answer those questions now.


Besides Idril’s comments about the fossil in Shadow of War and how large the actual animal must have been (“several hundred feet”), we have no real indication of the fossil’s size – no scale bar alongside its depiction, for instance. Knowing the actual size of a squid’s beak allows scientists to estimate the animal’s size, based on data from recent species. For instance, Tanabe et al. (2015), described a new squid species based on a fossilized beak (Fig. 4). They named it Haboroteuthis poseidon and, by its lower beak of roughly 7 cm, estimated it to be the size of a Humboldt squid (Dosidicus gigas d’Orbigny, 1835), with a mantle length of 1.5 m – a giant in its own right. However, nature does not disappoint us in this regard and we have two amazingly huge species, aptly named Colossal squid and Giant squid.

Figure 4. The fossil beak (lower jaw, viewed from several angles) of Haboroteuthis poseidon Tanabe, Misaki & Ubukata, 2015, a squid from the late Cretaceous period (roughly 85 million years ago) of Japan. Image reproduced from Tanabe et al. (2015: fig. 7).

The Colossal squid, Mesonychoteuthis hamiltoni Robson, 1925, is the largest living cephalopod species in terms of body mass. It is very bulky, weighing up to half a ton and maybe even more. The Giant squid, Architeuthis dux Steenstrup, 1857, is actually the largest invertebrate alive – it can reach up to 20 meters (about 65 feet) in length, from the tip of its mantle to the tip of its long tentacles. However, Architeuthis has a slender build and even though it is larger, it weighs less than Mesonychoteuthis. Centuries ago encounters on the open sea with Architeuthis left Nordic seafarers in awe, giving rise to the legend of the Kraken (Salvador & Tomotani, 2014).

But since Idril did not take her time to actually measure the fossil, we cannot estimate the body size of the Mordorian squid. Her estimate of several hundred feet is way larger than the “modest” 65 feet of Architeuthis and extremely unrealistic for any kind of animal (both soft-bodied and with a hard internal skeleton); thus, it can be dismissed as a guesstimate of someone without training in zoology. However, given the large “prehistoric” proportions of other animals in Tolkien’s legendarium, such as wargs and oliphaunts, we could expect the Mordorian squid to be really big – but good old Biology would not allow a much larger size than Architeuthis.

But what about the Middle-earth canon? Did Tolkien provide us with some nice Kraken-like legends to settle this matter?


Judging by videos and forum discussions on the Internet, most of the players that found the fossil in Shadow of War just considered it to belong to a monster akin to the “Watcher in the Water” from The Fellowship of the Ring (Tolkien, 1954a). Of course, that simply cannot be, because the Watcher is not a cephalopod; for starters, he is watching from a pool of freshwater. Its physiology and behavior do not really match those of cephalopods. The Watcher’s physical description (Tolkien, 1954a) is vague enough to match virtually any kind of “tentacled” monster; people just assume it is a cephalopod because of the tentacles[2] (e.g., Tyler, 1976).

In his Tolkien Bestiary, Day (2001) took a huge liberty and gave the name Kraken to the Watcher.[3] Tolkien, however, never mentioned a Kraken (or cephalopods) in his writings – and surely did not relate that name to the Watcher[4] (even in manuscript; C. Tolkien, 2002a).

As Tolkien scholarship is very complex, I reached out to the American Tolkien Society just to be safe. They confirmed the absence of krakens and squid-like beasts in Tolkien’s works (A.A. Helms, personal communication 2017).

We must remember, however, that the video games (including Shadow of War) are not part of the accepted Tolkien’s canon, which includes only the published writings of J.R.R. Tolkien and the posthumous works edited and published by his son Christopher. Games like Shadow of War are thus allowed to deviate from the core works and invent new things to amaze and surprise its players. And one of these things seems to be the fossil giant squid.

Therefore, we can think of Shadow of War’s squid as a new discovery: a new species hitherto unknown to Science. New species discoveries always get the public’s attention, but few people actually know how scientists are able to recognize a species as new and what they do to formally describe and name it. So let us take a closer look at the whole process.


The beaks of recent cephalopods have been widely studied by zoologists (e.g., Clarke, 1962; Nixon, 1988) and so they provide a good basis for comparison when someone finds a new fossil. By comparing the morphological features of the new find with previously known species, it is possible to decide if it belongs to one of them or if it represents a new species.

Now let us imagine that the Mordorian fossil was compared to all known cephalopods and we discovered it is, in fact, a new species. How do scientists formally describe a new species and give it one of those fancy Latin names?

The science of defining and naming biological organisms is called Taxonomy and it deals with all types of living beings, from bacteria to plants to animals. Zoologists have long ago come up with a set of rules for describing new species; it is called the International Code of Zoological Nomenclature, or ICZN for short.[5] We are now in the 4th edition of the ICZN, from 1999. The “Code” gives us guidelines for naming species and for what is considered a good (or valid) species description. For a new species to be recognized by the scientific community, its authors (i.e., the scientists describing it) have to provide a set of crucial information: (1) a description or a diagnosis of the species; (2) a holotype specimen; (3) the type locality; and (4) a scientific name. So let me explain each of these.

The description of a species is very straightforward: the researcher lists all the features (called “characters”) from the species. This includes morphology (e.g., shape, color), anatomy (e.g., internal organs), behavior (e.g., feeding habits, courtship), ecology (e.g., preferred prey), habitat, etc. As Mayr et al. (1953: 106) put it, the characters listed in the description are limited “only by the patience of the investigator”.

The diagnosis, on the other hand, is a list of just those characters that distinguish the new species from all the other species in the same group (like a genus or family). The word “diagnosis” comes from the Greek and originally means “to distinguish between two things” (Simpson, 1961). Both description and diagnosis are written in a peculiar telegraphic way, which will seem very odd for people not used to it.

The holotype is a single physical specimen chosen by the author to be the name-bearing specimen of the given species. That means the scientific name of the species is forever linked with that specimen and this will form the basis for the definition of the species. The holotype should ideally represent the species well, but this is not always the case: it can be an entire animal, such as a squid preserved in a jar of ethanol, or just part of the animal, such as the squid’s beak. The latter case is especially true for fossils, where the whole animal is not preserved. Finally, the holotype should be preserved and kept in a museum or university collection, thus allowing access to anyone interested in studying it.

The type locality is the place where the holotype comes from; the more precise the locality (e.g., GPS coordinates), the better. For fossils, it is also common to indicate the type stratum, that is, the layer of rock where the holotype was found.

Finally, the author gets to choose a scientific name for the species. The scientific names of species are formed by two parts; let us have as an example the species Corvus corax, the common raven. The first part is actually the name of the genus, Corvus, which includes not only ravens but also species of crows, rooks, and jackdaws. The second part of the name (corax) is called the “specific epithet”. However, one should always remember that the species name is not simply corax. The word corax by itself means nothing unless it is accompanied by the genus name. Thus, the complete name of the raven species is Corvus corax.

When choosing the specific epithet, the author can use anything he wants, but most commonly people use a word that denotes: (1) a morphological feature, such as Turdus rufiventris, the rufous-bellied thrush (naturally, rufiventris means “rufous-bellied”); (2) the place where the species can be found, such as the Abyssinian thrush, Turdus abyssinicus (Abyssinia is a historical name for Ethiopia); (3) an ecological or behavioral trait, like the mistle thrush, Turdus viscivorus (viscivorus means “mistletoe eater”); or (4) a homage to someone, like Naumann’s thrush, Turdus naumanni, named in honor of the German naturalist Johann Andreas Naumann (the suffix “-i” in the specific epithet is the Latin masculine singular form of the genitive case). The explanation of where the name comes from is called etymology.

Furthermore, when writing a scientific name, it is good practice to also include the authorship of the species; this means including the name(s) of the author(s) who originally described it. In the example above, the complete species name would be Corvus corax Linnaeus, 1758. Linnaeus is the scientist who first described the species and 1758 is the year he published the description.

So now that the formalities of taxonomy were presented, let us see how our new Mordorian species could be described. If the species in question cannot be placed in an existing genus, a new genus might be described and the same ICZN rules above apply. So let’s start by naming the genus Mordorteuthis n. gen.[6], which reflects the place where the fossil was discovered (“teuthis”, from the Greek, means “squid”).

The new species could then be formally described as Mordorteuthis idrilae n. sp.[7], named in honor of Idril (the suffix “-ae” in the specific epithet is the Latin feminine singular form of the genitive case).[8] The holotype would be the specimen recovered by Talion (Fig. 1) that originally belonged to the treasury of Minas Ithil. For safekeeping, the holotype should then be handed over to a decent academic institution, like the Royal Museum of Minas Tirith (yes, I just invented that). The type locality would be Mordor, close to the Sea of Núrnen; the type stratum, however, remains unknown, as this information is not provided in the game (it is suggested, however, that the fossil was found on a beach of the Sea of Núrnen). The diagnosis should give a list of features (such as its large size) that can distinguish it from other fossil squids from Middle-earth; a hard task, given that this is the very first fossil squid described from Middle-earth. The description would be a full account of the fossil’s shape, proportions, and fine structures; this can be boring even for trained taxonomists, so I won’t do it here (for an actual example, see Tanabe & Hikida, 2010).

Finally, we might glimpse some information about the squid’s habitat: the fossil was found close to the Sea of Núrnen, which is an inland saltwater lake, like our Dead Sea (Tolkien, 1954b). Both the Sea of Núrnen and the Sea of Rhûn to the north are thought to be remnants of the old Sea of Helcar from the First Age (Fonstad, 1991; C. Tolkien, 2002b).[9] The Sea of Helcar would be much larger and thus, perhaps a fitting place for large squids to thrive. Besides, its old age makes it a likely point of origin for a fossil.

Of course, a new species description is only valid if published in the scientific literature. Therefore, our little flight of fancy with Mordorteuthis idrilae here is not a valid species description, but it can sure serve as a nice introduction to taxonomy and to how scientists describe new species.

Finally, it is always worthwhile to mention that several taxonomists have paid homage to Tolkien by naming their genera and species after characters and places from his writings (Isaak, 2014). For instance, we have the genera Smaug (lizard), Beorn (tardigrade), and Smeagol (snail), and the species Macropsis sauroni (leafhopper), and Bubogonia bombadili and Oxyprimus galadrielae (both fossil mammals). But there are many others. That may be inevitable in a sense, as several nerds end up becoming scientists. In any event, geeky names such as these sure make an otherwise arid science a little bit more colorful.


Boyle, P. & Rodhouse, P. (2005) Cephalopods: Ecology and Fisheries. Blackwell Science, Oxford.

Clarke, M.R. (1962) The identification of cephalopod “beaks” and the relationship between beak size and total body weight. Bulletin of the British Museum (Natural History), Zoology 8: 419–480.

Day, D. (2001) Tolkien Bestiary. Random House, New York.

Fonstad, K. (1991) The Atlas of Middle-earth, Revised Edition. Houghton Mifflin Harcourt, New York.

International Commission on Zoological Nomenclature. (1999) International Code of Zoological Nomenclature, 4th ed. The International Trust for Zoological Nomenclature, London.

Isaak, M. (2014) Curiosities of Biological Nomenclature. Etymology: Names from Fictional Characters. Available from: (Date of access: 11/Jan/2018).

Mayr, E.; Linsley, E.G.; Usinger, R.L. (1953) Methods and Principles of Systematic Zoology. McGraw-Hill, New York.

Miserez, A.; Schneberk, T.; Sun, C.; Zok, F.W.; Waite, J.H. (2008) The transition from stiff to compliant materials in squid beaks. Science 319(5871): 1816–1819.

Nishiguchi, M. & Mapes, R.K. (2008) Cephalopoda. In: Ponder, W.F. & Lindberg, D.R. (Eds.) Phylogeny and Evolution of the Mollusca. Springer, Dordrecht. Pp. 163–199.

Nixon, M. (1988) The buccal mass of fossil and Recent Cephalopoda. In: Clarke, M.R. & Trueman, E.R. (Eds.) The Mollusca, Vol. 12, Paleontology and Neontology of Cephalopods. Academic Press, San Diego. Pp. 103–122.

Rosenberg, G. (2014) A new critical estimate of named species-level diversity of the recent Mollusca. American Malacological Bulletin 32(2): 308–322.

Salvador, R.B. & Cunha, C.M. (2016) Squids, octopuses and lots of ink. Journal of Geek Studies 3(1): 12–26.

Salvador, R.B. & Tomotani, B.M. (2014) The Kraken: when myth encounters science. História, Ciências, Saúde – Manguinhos 21(3): 971–994.

Simpson, G.G. (1961) Principles of Animal Taxonomy. Columbia University Press, New York.

Tanabe, K. (2012) Comparative morphology of modern and fossil coleoid jaw apparatuses. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 266(1): 9–18.

Tanabe, K. & Fukuda, Y. (1999) Morphology and function of cephalopod buccal mass. In: Savazzi, E. (Ed.) Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, London. Pp. 245–262.

Tanabe, K.; Misaki, A.; Ubukata, T. (2015) Late Cretaceous record of large soft-bodied coleoids based on lower jaw remains from Hokkaido, Japan. Acta Palaeontologica Polonica 60(1): 27–38.

Tennyson, A.L. (1830) Poems, chiefly lyrical. University of Pennsylvania Press, Philadelphia.

Tolkien, C. (2002a) The History of Middle-earth II. HarperCollins, London.

Tolkien, C. (2002b) The History of Middle-earth III. HarperCollins, London.

Tolkien, J.R.R. (1954a) The Fellowship of the Ring. George Allen & Unwin, London.

Tolkien, J.R.R. (1954b) The Two Towers. George Allen & Unwin, London.

Tyler, J.E.A. (1976) The Complete Tolkien Companion. St. Martin’s Press, New York.


Brown, R.W. (1956) Composition of scientific words. Revised edition. Smithsonian Books, Washington, D.C.

Mayr, E. & Ashlock, P.D. (1991) Principles of Systematic Zoology, 2nd ed. McGraw-Hill, New York.

Salvador, R.B. (2014) Geeky nature. Journal of Geek Studies 1(1-2): 41–45.

Winston, J.E. (1999) Describing Species: Practical Taxonomic Procedure for Biologists. Columbia University Press, New York.

Wright, J. (2014) The Naming of the Shrew: A Curious History of Latin Names. Bloomsbury Publishing, London. 


I am deeply grateful to the people from the American Tolkien Society (Amalie A. Helms, Connor Helms, and Phelan Helms) for the information about “krakens” in Tolkien’s works; to Dr. Philippe Bouchet (Muséum national d’Histoire naturelle, Paris, France) for the help with ICZN articles; and to Dr. Barbara M. Tomotani (Netherlands Institute of Ecology, Wageningen, The Netherlands) and Dr. Carlo M. Cunha (Universidade Metropolitana de Santos, Santos, Brazil) for the permission to use, respectively, Figures 2 and 3 here.


Dr. Rodrigo Salvador is a malacologist who has made his peace with the fact that virtually no one knows what a malacologist is. In case you’re wondering, it means “a zoologist specializing in the study of mollusks”. Despite being a Tolkien fan through and through, he does think that Middle-earth could use more zoological diversity.

[1] Called “cuttlebone” in cuttlefish and “gladius” or “pen” in squids and octopuses, although some lineages have completely lost the shell. Other cephalopods, like the nautilus, have very prominent external shells, as is the norm for other mollusks (e.g., snails, clams, etc.).

[2] Since people always get this wrong, just let me clear things up: squids have 8 arms and 2 tentacles, while octopuses have 8 arms and no tentacles whatsoever.

[3] Day also took another huge liberty in using the opening verses of the poem The Kraken (Alfred Lord Tennyson, 1830) without giving proper credit to the poet.

[4] Being stricter, the Watcher, like the Nazgûl’s flying mounts, remained nameless.

[5] Botanists (and mycologists) have their own code, the International Code of Nomenclature for Algae, Fungi, and Plants. Bacteriologists have their code as well, the International Code of Nomenclature of Bacteria.

[6] The abbreviation “n. gen.” after the name means “new genus” and indicates that the genus is being described here for the first time.

[7] Likewise, “n. sp.” means “new species” and indicates that the species is being described here for the first time.

[8] The nomenclatural acts on this article are presented simply for hypothetical concepts (a Middle-earth squid) and are disclaimed for nomenclatural purposes, being thus not available (ICZN Articles 1.3.1 and 8.3).

[9] In earlier writings, the names are usually spelled Nûrnen and Helkar.

Check other articles from this volume